

The City of Edmonton: Sustainable Return on Investment Analysis of LEED™ Certification Levels for New Building Construction

HDR Corporation Decision Economics

Risk Analysis – Investment and Finance Economics and Policy **Prepared for:** The City of Edmonton

Prepared by: HDR Corporation

May 30th, 2014

Sustainable Return on Investment Analysis of LEED™ Certification Levels for New Building Construction

The City of Edmonton

Prepared by:

HDR is a global employee-owned firm providing architecture, engineering, consulting, construction and related services through our various operating companies. It was founded in 1917 and employs over 8,600 professionals in over 200 locations.

HDR Decision Economics offers economic, statistical, and financial consulting services to global clients in both the public and private sector and employs a staff comprised of over 40 economists, financial analysts and statisticians throughout North America. The group has successfully completed over one thousand economic assessment studies in the past ten years to a diverse set of clients in the United States and Canada.

HDR Architecture currently has roughly 800 LEED[™] Accredited Professionals, working on 36 million square feet of Sustainable Design projects (159 projects); currently HDR has 52 LEED[™] Certified projects. With this experience, HDR understands the LEED[™] Certification process and is aware of the nuances of the point rated system including what categories of credits have the most direct impact on construction, operating and replacement costs.

SROI originated from a Commitment to Action by HDR to develop a new generation of public decision support metrics for the Clinton Global Initiative (CGI) in 2007. SROI was developed with input from Columbia University's Graduate School of International Public Affairs and launched at the 2009 CGI annual meeting. Since then, the SROI process has been used by HDR to evaluate the monetary value of sustainability programs and projects with a combined value of over \$15 Billion. It has been used by corporations and all levels of government.

TABLE OF CONTENTS

Table of Contents	3
Executive Summary	4
1.0 Introduction	13
2.0 Methodology	14
 2.1 Literature Review 2.2 Incremental Credit Determination & Determining Input Values 2.3 Develop Model Logic 2.4 Determine Input Values 2.5 Monetized Social Values 	25 31 31
3.0 Results	49
3.1 Risk Analysis Results	60
Appendix A: Inputs and Assumptions	68
Appendix B: Incremental Credits Evaluation	79
Appendix C: Cost Breakdowns & Calculations	94
Appendix D: Structure & Logic Diagrams	100
Appendix E: Overview of Sustainable Return On Investment (SROI)	115
Appendix F: Glossary of Terms	

EXECUTIVE SUMMARY

Introduction:

HDR Inc. was engaged to provide a comprehensive economic business case, utilizing its Sustainable Return on Investment (SROI) analysis methodology, for the City of Edmonton (City) with respect to LEED[™] certified construction levels. The City wishes to undertake an analysis to compare the lifecycle benefits and costs that different LEED[™] certification levels provide. The scope of work includes two distinct build scenarios on three recently completed buildings in Edmonton to help inform potential changes in the City's Sustainable Building Policy. Scenario A compares the three buildings at LEED[™] Silver certification level to those same buildings if built to the standard construction level for a municipally operated building in Edmonton. The term *"standard construction"* throughout this report refers to the level of performance that would be expected from a typical building, built to City standards (over and above the minimum of Alberta Building Code 2006), but without being designed and constructed to achieve LEED[™] certification. Scenario B compares the buildings at LEED[™] Gold certification level to those same buildings if built to LEED[™] Silver standards. In other words, while the City recognizes the value in building and operating sustainably, and would always pursue some level of sustainability in its buildings, it is seeking to meticulously determine the incremental value of LEED[™] certification on specific facilities.

This report documents the methodology of the analysis, inputs used in the model, evaluation metric results, and the risk-adjusted probability curves of the key metrics, as well as background information, general comments, and conclusions. In this case, HDR's analysis indicates that in aggregate, the additional rigour and costs that come with certifying at LEED[™] Silver is a worthwhile pursuit as compared to the standard construction building, and also that in aggregate, LEED[™] Gold is worthwhile as compared to LEED[™] Silver. The analysis demonstrates these outcomes both financially, through lifecycle operating and maintenance cost savings, and from a triple bottom line view from the lens of economic, social, and environmental impacts which have also been monetized.

The City of Edmonton's Sustainable Building Policy targets a LEED[™] Silver level of certification for new construction and major renovations that exceed 40% of the existing gross floor area and targets 30% or greater energy efficiency than the Model National Energy Code for Buildings. The City's Policy framework also positions the City "....to lead and support the delivery of public and industry education campaigns, provide incentives and engage in capacity building activities and use its authority in land use planning and development approvals to transform the local green building market"¹. During the April 22, 2013 Audit Committee meeting, a motion was made for Administration to provide a detailed breakdown of costs and benefits of LEED[™] certification and the appropriateness of application on City projects. The City wishes to undertake this analysis to directly answer the aforementioned motion and inform any potential changes in its Sustainable Building Policy.

A central piece of this analysis was to determine the possible incremental performance differences between the various LEED[™] certification levels, and the standard level of construction for the case study buildings. A hypothetical, not-certified case for each building was created by identifying those credits specifically linked with each of the Silver or Gold LEED[™] certification levels; these credits were then used as the basis for the determination of any incremental benefits and costs for each case study facility.

¹ The City of Edmonton, Green Building Policy, Policy Number C567, adopted June 20, 2012.

The analysis consisted of a review of three case studies of City of Edmonton buildings completed in recent years that are targeting or have achieved LEED[™] certification. To ensure consistency of comparative variables, the projects reviewed were all greenfield, new construction, and all used the LEED[™] Canada NC 1.0 rating system. The buildings were selected to represent different facility types and sizes across the City. The buildings analyzed are as follows:

- Ellerslie Fire Station No. 27 is a 17,900ft² (1,660m²) fire rescue services facility located in Edmonton's Southern neighbourhood of Ellerslie. The facility includes training and administrative space, living accommodations and a fire truck garage, employing 38 full time (equivalent) fire rescue staff. Ellerslie fire station is currently in the advanced stages of review by the Canadian Green Building Council and anticipates a LEED[™] 'Gold' rating.
- Fort Edmonton Park Administration Building is a 7,000ft² (650m²) facility located in Edmonton's South-Central neighbourhood of Brander Gardens. The facility provides administrative and meeting/conference space to Community Recreation Facilities employees and houses approximately 20 full time (equivalent) employees. Fort Edmonton Park Admin was awarded a LEED[™] 'Silver' rating in 2013.
- 3. South West Edmonton Police Services is a 60,000ft² (5,575m²) police services facility located Edmonton's South-West neighbourhood of Ambleside. The facility provides a variety of integrated services for both staff and the community including administrative, vehicle maintenance, holding cells, community outreach and officer training facilities. The facility employees 350 full time staff and services the entirety of the South-West division neighbourhoods. The project is in the early stages of review by the Canada Green Building Council and anticipates a LEED[™] 'Silver' rating.

To undertake the LEED[™] certification analysis HDR used its Sustainable Return on Investment (SROI) methodology. SROI is an enhanced form of a cost-benefit analysis (CBA) - a systematic process for calculating and comparing the benefits and costs of a project or policy, and is generally conducted to justify an investment or compare projects. The SROI process builds on best practices in cost-benefit and financial analysis methodologies complemented by advanced risk analysis. The framework identifies the significant impacts of a given investment, and makes every attempt to credibly value them in monetary terms. HDR utilized a multi-disciplined team of architects and economists to produce the analysis, and collaborated with key City staff throughout the process.

Green buildings are often regarded as having defined costs for construction, operations, and maintenance as well as defined benefits in any utility or life cycle cost savings that are provided by upgraded materials or components. However, there are also less tangible benefits to building users, larger society, and the environment that are realized when sustainable design and construction practices are implemented. In addition to accounting for the forecasted financial costs and benefits to LEED[™] certification, this analysis monetized those non-cash benefits and costs including impacts related to greenhouse gases, criteria air contaminants, stormwater, potable water, health and productivity, and transportation. In other words, through SROI, HDR was able to quantify and monetize those impacts typically assessed only qualitatively, allowing for an apples to apples comparison of various sustainability investments. Economic viability is determined on the basis of whether the long-term benefits exceed the costs and whether the rate of return is adequate.

Results:

A central piece of this analysis was to determine the possible incremental performance differences between the various LEED[™] certification levels, and the standard level of construction for the case study buildings.

Scenario A compares a LEED[™] Silver facility to the same building if it were hypothetically built to Edmonton's standard construction level. It is anticipated that while there would be initial capital cost savings realized in foregoing LEED[™] (certification and registration fees and consultant premiums, sustainable building strategies and technologies) the green design ambitions, efficiency innovations, and structured verification metrics required to achieve LEED[™] Silver standing would result in a facility that performs at incrementally higher levels of optimization relating to water use, energy consumption, and occupant productivity, amongst others. Scenario B compares a LEED[™] Silver facility to the same building if it were to achieve a LEED[™] Gold rating. The difference between LEED Gold and LEED silver in the instance of the 3 case studies was 8 - 10 credits. As such, additional funds, design strategies, and incrementally higher levels of performance would then be required.

The results tables that are generated from the SROI analysis provide a summary of the study's financial results, shown as the Net Present Value (NPV), Benefit-Cost Ratio (BCR), and Discounted Payback Period (DPP) for each of the alternatives.

- NPV is defined as the present value of total benefits over the life of the investment minus the
 present value of total costs over the same period. NPV is the principal measure of a capital
 investment's economic worth. A positive value means that the investment would furnish
 benefits to the region whose total economic value exceeds the capital costs and operating
 funds needed to build and run the system.
- The BCR highlights the overall "value for money" of a project, expressed as the ratio of the benefits of a project relative to its costs, with both expressed in present-value monetary terms.
- Finally, the DPP is the period of time required for the return on an investment to recover the sum of the original investment on a discounted cash flow basis.

The following section provides the results from the SROI analysis. Outputs are split into two perspectives: Financial Return on Investment (FROI), and Sustainable Return on Investment (SROI).

- Financial Return on Investment (FROI) includes only the cash impacts to the owner of the building (City of Edmonton) highlighted in blue font
- Sustainable Return on Investment (SROI) adds the external non-cash impacts which affect society to the FROI (items such as greenhouse gases (GHG's) and criteria air contaminants (CAC's)) highlighted in green font, additive to the FROI

The results for the two scenarios are all risk-adjusted - HDR took into account the inherent uncertainty in the inputs, used probability distributions, and ran a probabilistic simulation to produce the expected outcomes.

Table ES 1. Summary of Results (Mean Risk-Adjusted Values)

Scenario A: LEED Silver vs Standard Construction SROI Analysis - Impacts & Results: 30 Year Study Period	Ellerslie Fire Station	Fort Edmonton Administration	Edmonton Police Service SW Division Station	Aggregate Results		
Social Benefit of Reduced Potable Water Use	\$2	\$2	\$90	\$95		
GHG Social Benefit from Reduced Energy Use (Electricity & Natural Gas)	\$251,887	\$57,939	\$790,415	\$1,100,242		
CAC Social Benefit from Reduced Energy Use (Electricity & Natural Gas)	\$155,584	\$32,239	\$518,087	\$705,909		
8 O&M Cost Savings (Including Energy) at Water/Wastewater Treatment Plants	\$218	\$247	\$9,734	\$10,199		
⁸ / ₂ ⁹ / ₄ ⁸ / ₄ ⁹ / ₄ ⁸ / ₄ ⁹ / ₄ ⁸ / ₄ ⁹ / ₄ ¹⁰ / ₄	\$179,663	\$81,055	\$1,089,901	\$1,350,620		
हैं GHG Social Benefits from Reduced Truck & Car Distance Travelled	\$0	\$1,847	\$0	\$1,847		
	\$0	\$357	\$0	\$357		
별 CAC Social Benefits from Reduced Truck & Car Distance Travelled Vehicle Operating Cost Savings from Reduced Truck & Car Distance Travelled	\$0	\$34,023	\$0	\$34,023		
면 Reduced Social Cost of Accidents from Reduced Truck & Car Distance Travelled	\$0	\$2,402	\$0	\$2,402		
Reduced Social Cost of Accidents from Reduced Truck & Car Distance Travelled Reduced Social Cost of Pavement Damage from Reduced Truck & Car Distance Travelled Reduced Social Cost of Traffic Noise from Reduced Truck & Car Distance Travelled	\$0	\$331	\$0	\$331		
B Reduced Social Cost of Traffic Noise from Reduced Truck & Car Distance Travelled	\$0	\$212	\$0	\$212		
Reduced Social Cost of Traffic Congestion from Reduced Truck & Car Distance Travelled	\$0	\$10,786	\$0	\$10,786		
Capital & Soft Costs - Incremental Total For All Credits	(\$261,400)	(\$163,390)	(\$617,950)	(\$1,042,740)		
Net O&M Cost Impacts (Non-Energy and Water)	\$135,266	\$67,660	\$489,364	\$692,290		
Potable Water Cost Savings	\$6,496	\$7,916	\$280,939	\$295,351		
Energy Cost Savings (Electricity & Natural Gas)	\$562,693	\$113,979	\$1,963,365	\$2,640,037	Я	ŝ
Capital Replacement Costs Savings and Residual Value of Investment	\$0	\$52,866	\$65,818	\$118,684	õ	lõ
۶ FROI Net Present Value	\$443,054	\$79,032	\$2,181,537	\$2,703,622		
g FROI Benefit Cost Ratio	2.7		4.5	3.6	끐	
FROI Discounted Payback Period	10 y 2 m		6 y 5 m	8 y	RO	
FROI Net Present Value FROI Benefit Cost Ratio FROI Discounted Payback Period SROI Net Present Value	\$1,030,409	\$300,472	\$4,589,764	\$5,920,645	_	
SROI Benefit Cost Ratio	4.9	-	8.4	6.7	ŝ	
SROI Benefit Cost Ratio	6 y 1 m		3 y 11 m	4 y 9 m	ROI	

The results herein include only the incremental costs and benefits identified when comparing specific buildings involving a hypothetical determination of incremental credits in two build situations: in this case comparing the net benefits of LEED Silver vs Standard Construction (over and above ABC 2006).

Summary of Results: Scenario A - LEED[™] Silver vs Standard Construction Building

- The aggregate results comparing LEED[™] Silver versus Standard Construction are positive
 - Each building generates positive financial returns from a cash-only (FROI) perspective:
 - Over the study period, the combination of utility savings from reduced electricity, natural gas, and water use, as well as other operating & maintenance (O&M) costs and avoided replacement costs savings exceeds the addition capital costs (including LEED[™] consultant, registration and certification costs) and any additional O&M costs incurred related to the incremental credits for Ellerslie Fire Station, Fort Edmonton Administration, and Edmonton Police Service SW Division. However, each building shows varying degrees of magnitude of positive outcomes.
 - The aggregate financial results are overwhelmingly positive: pursuing LEED[™] Silver versus standard construction generates 3.6 times more lifecycle benefits than costs, pays for its costs within 8 years, and generates roughly \$2.7M in net financial benefits to the facility owners.
 - Each building generates positive returns from a triple bottom line (economic, social, and environmental) perspective:
 - The aggregate triple bottom line SROI results are overwhelmingly positive: pursuing LEED[™] proves to generate 6.7 times more lifecycle benefits than costs, pays for the costs within 4 years and 9 months, and generates roughly \$5.9M in net benefits.
- Building to LEED[™] Silver versus Standard Construction generates positive externalities to society
 - The net social and environmental impacts monetized in this analysis are positive:
 - The triple bottom line economic, social, and environmental perspective output metrics (SROI) from each building are superior than the cash-only metrics (FROI)
 - In aggregate, the buildings generate roughly \$3.2M in net positive monetized benefits to society resulting from: reduced electricity, natural gas, and potable water consumption; improved thermal comfort and toxins/irritants control; and reduced car and truck distances travelled from carpooling and regionally sourced materials.

Table ES 2. Summary of Results (Mean Risk-Adjusted Values)

Scenario B: LEED Gold vs LEED Silver SROI Analysis - Projected Impacts & Results: 30 Year Study Period	Ellerslie Fire Station	Fort Edmonton Administration	Edmonton Police Service SW Division Station	Aggregate Results		
Social Benefit of Reduced Potable Water Use	\$2	\$4	\$56	\$62		
GHG Social Benefit from Reduced Energy Use (Electricity & Natural Gas)	\$32,319	\$13,247	\$290,631	\$336,196		
CAC Social Benefit from Reduced Energy Use (Electricity & Natural Gas)	\$19,954	\$7,101	\$190,531	\$217,586		
O&M Cost Savings (Including Energy) at Water/Wastewater Treatment Plants	\$247	\$373	\$6,025	\$6,645		
Stormwater Management Benefits (TSS Reduction)	\$309,971	\$0	\$581,242	\$891,213		
Social Benefit of Enhanced Productivity from Indoor Environmental Quality Improvements	\$141,810	\$73,435	\$752,120	\$967,365		
Urban Park/Tree Benefits	\$37,447	\$46,809	\$96,081	\$180,336		
FSC Wood Benefits (Commensurate with Costs)	\$0	\$1,675	\$0	\$1,675		
GHG Social Benefits from Reduced Truck & Car Distance Travelled	\$0	\$0	\$152	\$152		
CAC Social Benefits from Reduced Truck & Car Distance Travelled	\$0	\$0	\$234	\$234		
Vehicle Operating Cost Savings from Reduced Truck & Car Distance Travelled	\$0	\$0	\$1,387	\$1,387		
Reduced Social Cost of Accidents from Reduced Truck & Car Distance Travelled	\$0	\$0	\$47	\$47		
Reduced Social Cost of Pavement Damage from Reduced Truck & Car Distance Travelled	\$0	\$0	\$218	\$218		
Reduced Social Cost of Traffic Noise from Reduced Truck & Car Distance Travelled	\$0	\$0	\$38	\$38		
Reduced Social Cost of Traffic Congestion from Reduced Truck & Car Distance Travelled	\$0	\$0	\$219	\$219		
Capital & Soft Costs - Incremental Total For All Credits	(\$69,386)	(\$134,520)	(\$469,399)	(\$673,305)		
Net O&M Costs - Incremental Total For All Credits	\$0	\$ 0	\$0	\$0		
Net O&M Cost Impacts (Non-Energy and Water)	(\$2,128)	\$134,312	(\$8,454)	\$123,730		
Potable Water Cost Savings	\$7,368	\$11,966	\$173,900	\$193,235	끐	¥
Energy Cost Savings (Electricity & Natural Gas)	\$72,124	\$25,358	\$721,311	\$818,793	õ	SROI
FROI Net Present Value	\$7,979	\$37,116	\$417,358	\$462,454		
FROI Benefit Cost Ratio	1.1		1.9	1.7	규	
FROI Discounted Payback Period	27 y	22 y 10 m	14 y 8 m	16 y 7 m		
SROI Net Present Value	\$549,730	\$179,759	\$2,336,337	\$3,065,826		
SROI Benefit Cost Ratio	8.7	2.3	5.9	5.5	Ş	
SROI Discounted Payback Period	3 y 9 m	11 y 9 m	5 y 1 m	5 y 5 m		

The results herein include only the incremental costs and benefits identified when comparing specific buildings involving a hypothetical determination of incremental credits in two build situations: in this case comparing the net benefits of LEED Gold vs LEED Silver

Summary of Results: Scenario B - LEED[™] Gold vs LEED[™] Silver

- The aggregate results in building to LEED[™] Gold versus LEED[™] Silver are positive, although specific buildings generate unique results
 - Each building generates positive financial returns from a cash-only (FROI) perspective:
 - Over the study period, the combination of utility savings from reduced electricity, natural gas, and water use, as well as other operating & maintenance (O&M) costs and avoided replacement costs savings exceeds the addition capital costs and any additional O&M costs incurred related to the incremental credits for Ellerslie Fire Station, Fort Edmonton Administration, and Edmonton Police Service SW Division.
 - The aggregate financial results are positive: pursuing LEED[™] Gold versus LEED[™] Silver generates 1.7 times more lifecycle benefits than costs, pays for its costs within 16 years and 7 months, and generates roughly \$462K in net financial benefits to the facility owners.
 - Each of the buildings generate positive returns from a triple bottom line (economic, social, and environmental) perspective:
 - The aggregate triple bottom line SROI results are overwhelmingly positive: pursuing LEED[™] Gold vs LEED[™] Silver proves to generate 5.5 times more lifecycle benefits than costs, pays for the costs in under 5 years and 5 months, and generates roughly \$3M in net benefits.
- Building to LEED[™] Gold versus LEED[™] Silver generates positive externalities to society
 - The net social and environmental impacts monetized in this analysis are positive:
 - The triple bottom line economic, social, and environmental perspective output metrics (SROI) from each building are superior than the cash-only metrics (FROI)
 - In aggregate, the buildings generate roughly \$2.6M in net positive monetized benefits to society resulting from: reduced electricity, natural gas, and potable water consumption; improved thermal comfort, toxins/irritants control, and reduced communicable diseases; FSC Certified wood; stormwater runoff management; urban parks/trees; and reduced car and truck distances travelled from carpooling and regionally sourced materials.

While the SROI analysis identifies the economic outcomes of building to higher levels of sustainability within the LEED^M NC 1.0 framework, the tables below identify the proportion that upfront costs related to different levels of LEED^M make up of the total construction value of each building. The first two tables below identify the actual incremental upfront costs associated with the two LEED^M levels versus standard building construction for each building as a proportion of the actual total build costs. In these two cases, the upfront costs include LEED^M consultant premiums, LEED^M registration & certification costs, and total capital cost premiums (related to the capital costs associated with the LEED^M Gold vs LEED^M Silver perspective is taken – in this case, the numbers are framed as being only incremental to Gold at the Silver level. Here, we include in the upfront costs only the total capital cost premiums; however, no LEED^M registration & certification costs are included as these would be paid in both levels of certification and therefore impose no additional incremental costs.

Table ES 3. Scenario A: LEED[™] Silver vs Standard Construction Upfront Cost Premiums

Total Upfront LEED Silver vs Standard	Construction Cost Premiums
---------------------------------------	----------------------------

	LEED Professional Premiums*	LEED Registration & Certification Costs	Total Capital Cost Premiums	Total LEED Premium	Total Construction Value**	Total LEED Silver Costs as a % of Total Construction Value
	\$88,500	\$7,500	\$165,400	\$261,400	\$8,405,214	3.1%
Ellerslie Fire Station	(1.05%)	(0.09%)	(1.97%)	(3.1%)		
Fort Edmonton	\$22,500	\$4,200	\$136,690	\$163,390	\$2,600,000	6.3%
Administration	(0.87%)	(0.16%)	(5.26%)	(6.3%)		
Edmonton Police Service	\$172,800	\$7,200	\$437,950	\$617,950	\$21,500,000	2.9%
SW Division Station	(0.80%)	(0.03%)	(2.04%)	(2.9%)		

* In Scenario B: Gold versus Silver, it is expected that additional LEED[™] consulting fees would apply due to the increased amount of documentation and design work on behalf of the consultant teams. City of Edmonton staff provided an incremental value per additional credit, based upon recent pricing received within the Edmonton market, for a City of Edmonton project. This pricing regime is considered to be reflective of local market conditions, building typology and client expectations. The incremental value per credit is multiplied by the number of additional credits needed to achieve hypothetical Gold to determine an incremental premium for additional consulting fees. As such, the Silver scenario for Ellerslie has also been adjusted to remove the additional premium if it had been designed to Silver standards.

** Adjusted for LEED[™] Rating: Ellerslie was designed for LEED[™] Gold; as such the total costs have been adjusted by the capital cost premium to reflect the hypothetical build at a LEED[™] Silver rating; the inverse holds true for Fort Edmonton and Police Service SW Division Station.

Table ES 4. Scenario B: LEED[™] Gold vs Standard Construction Upfront Cost Premiums

Total Upfront LEED Gold vs Standard Construction Cost Premiums

	LEED Professional Premiums*	LEED Registration & Certification Costs	Total Capital Cost Premiums	Total LEED Premium	Total Construction Value**	Total LEED Gold Costs as a % of Total Construction Value
	\$96,500	\$7,500	\$234,786	\$338,786	\$8,640,000	3.9%
Ellerslie Fire Station	(1.12%)	(0.09%)	(2.72%)	(3.9%)		
Fort Edmonton	\$30,500	\$4,200	\$263,210	\$297,910	\$2,863,210	10.4%
Administration	(1.07%)	(0.15%)	(9.19%)	(10.4%)		
Edmonton Police Service	\$181,800	\$7,200	\$898,349	\$1,087,349	\$22,398,349	4.9%
SW Division Station	(0.81%)	(0.03%)	(4.01%)	(4.9%)		

Table ES 5. Scenario B: LEED[™] Gold vs LEED[™] Silver Upfront Cost Premiums

Total Upfront LEED Gold vs LEED Silver Construction Cost Premiums

	LEED Professional Premiums*	LEED Registration & Certification Costs	Total Capital Cost Premiums	Total LEED Premium	Total Construction Value**	Total LEED Gold vs Silver Costs as a % of Total Construction Value
	\$8,000	\$0	\$69,386	\$77,386	\$8,640,000	0.9%
Ellerslie Fire Station	(0.09%)		(0.80%)	(0.9%)		
Fort Edmonton	\$8,000	\$0	\$126,520	\$134,520	\$2,863,210	4.7%
Administration	(0.28%)		(4.42%)	(4.7%)		
Edmonton Police Service	\$9,000	\$0	\$460,399	\$469,399	\$22,398,349	2.1%
SW Division Station	(0.04%)		(2.06%)	(2.1%)		

1.0 INTRODUCTION

This report provides a comprehensive economic business case, utilizing HDR's Sustainable Return on Investment (SROI) analysis methodology, for the City of Edmonton with respect to different levels of LEED[™] certification.

The report is organized as follows:

- Section 2 provides a review of related studies, a description of the methodology that was followed in determining the incremental credits used in the cost-benefit analysis and the corresponding inputs, as well as a description of the SROI approach used and social/environmental factors.
- Section 3 provides the key results at an aggregate level and at a building by building level, including a risk analysis section showing probability of returns for each building, as well as conclusions.
- **Appendix A** contains the inputs used in the analysis. Back-up calculations and values can be found in Appendix C.
- Appendix B contains a summary of the methodology HDR used in determining the incremental LEED[™] credits, as well as notes on the specific incremental impacts of each to be included in the SROI analysis for each building.
- Appendix C lists the detailed breakdown of the capital costs, operating and maintenance costs, energy use, water consumption, vehicle distances traveled, amongst others which act as inputs for the SROI model.
- Appendix D contains Structure and Logic (S&L) diagrams. S&Ls graphically represent the methodology used to calculate the benefits and cost of each LEED[™] credit.
- **Appendix E** provides an in-depth overview of the Sustainable Return on Investment (SROI) analysis methodology.
- Appendix F provides a glossary of key terms used throughout the analysis.

2.0 METHODOLOGY

HDR undertook a stepwise approach in its methodology:

- 1. Literature Review & Data Discovery: reviewing recently published LEED[™] related industry information applicable to this analysis, as well as reviewing all CaGBC submissions for each building.
- 2. *Incremental Credit Determination*: The analysis involved incremental credit determination exercises for two different scenarios:
 - Scenario A: Silver vs. Standard Construction

Scenario A focused on identifying the specific LEED[™] credits obtained for each building that might not have been achieved if LEED[™] were not pursued, and instead the building was constructed to the baseline standard of construction. Input from city project mangers, design professionals and other city staff was the basis of this exercise.

• Scenario B: Hypothetical Gold vs. Silver

Scenario B identified additional credits that may have been achieved if the LEED[™] Silver Buildings (Fort Ed. and SWEPS) were to have expended additional funds and pursued a LEED[™] Gold rating. In the case of Ellerslie, which does anticipate LEED Gold, an inverse approach was taken in which targeted credits were identified that may not have pursued if the project team had elected to only pursue LEED[™] Silver.

- 3. Cost & Benefit Categorization: proposing categories of costs and benefits to be monetized, based on credits specifically linked with LEED[™] certification and the availability of supporting literature to monetize impacts.
- 4. Develop Model Logic: for each credit under examination, HDR developed model logic using Structure & Logic diagrams to estimate incremental costs and benefit associated with LEED[™] certification. These diagrams depict the variables and cause and effect relationships that underpin the analysis.
- 5. Determine Input Values: values for each input variable in the model logic were assigned through working with the CaGBC submission documentation, City staff, project managers, the design team, contractors, and other sources. Upper and lower estimates for each input variable were also developed based on expert opinion as to the potential variability in each estimate.
- 6. SROI Model Creation and Risk Analysis: coding an Excel-based cost-benefit model which incorporated the prescribed approach to each cost and benefit category and generated the results using risk analysis and probabilistic simulation techniques to account for any uncertainty in both the input values and model parameters.

2.1 Literature Review

As an initial step toward quantification, HDR undertook a literature review of related studies in order to provide: (i) context around the cost and benefits of $LEED^{\mathbb{M}}$ certification and (ii) to provide values for select parameter estimates that may be missing from specific $LEED^{\mathbb{M}}$ project information. This section provides a brief overview on the findings of the literature review. **Canada:**

The Canada Green Building Council (CaGBC) recently published a resource called the Canadian LEED[™] Policy Database.² This is an evolving collection of municipal, provincial, and federal government policies that reference a green building policy in some capacity, be it either through LEED[™] or another system. To note from the database (as of December 2013):

Policy	Number of Municipalities			
Total Municipalities with LEED [™] or another Sustainable Policy				
Green Building Policy (requiring some level of LEED™)	47			
Green Building Policy (another Sustainable Building Policy outside of LEED™)	64			
Total (either LEED™ or another Sustainable Building Policy)	111			
Municipalities with LEED [™] Certification Requirement: Out of the 47 Identified Above				
LEED [™] Certification Requirement - Both Government Owned & Private Development	1			
LEED [™] Certification Requirement - Government Owned Only	26			
LEED [™] Certification Requirement - Private Development Only	20			

Table 1: Canadian Municipal Green Building Policies

We can see that there is a greater number of municipal Green Building Policies where LEED[™] certification is not a mandate (64), than where it is (47). We can also see that, marginally, LEED[™] certification requirements are more prevalent on government owned buildings (26) than on privately developed buildings (20).

United States:

There are several US cities that require LEED[™] certification on municipal buildings. The US Green Building Council (USGBC) publishes a public policy database allowing users to search which government entities require a commitment to building LEED[™].³ Searches on this database can be defined by government entity (federal, state, county, city, village/town, and school), certification level, and policy path used to require or encourage LEED[™] certification (regulatory, legislative, and executive). To gage the prominence of LEED[™] certification as a city policy, we examined city-level, government owned or supported LEED[™] NC requirements. The results are shown below (as of December 2012):

² <u>http://www.cagbc.org/Content/NavigationMenu/Programs/SmartGrowth/CanadianLEED™</u> <u>PolicyDatabase/default.htm</u>

³ USGBC. Public Policy Search. <u>http://www.usgbc.org/PublicPolicy/SearchPublicPolicies.aspx?PageID=1776</u>

Table 2: City-Level LEED[™] NC Requirements in the US

	Total
Certified	30
Silver	45
Gold	8
Platinum	0

Table 2 shows legislation is the most popular path to mandate LEED[™] certification at a municipal level, followed by executive and regulatory approaches respectively. LEED[™] Silver is the most popular level of LEED[™] certification required by 45 cities, followed by LEED[™] Certified with 30 cities, and finally LEED[™] Gold with 8 cities. There are currently no cities in the US requiring LEED[™] Platinum on government owned or supported projects. One should not conclude from this table that governments in the US have chosen the level of requirement based solely on outcomes from cost-benefit analysis; arbitrary decisions, as well as those framed by the political process would likely be prevalent.

Post-Construction Impacts:

We have reviewed studies which examine the investment value and performance of LEED[™] buildings post-construction. These studies contain general information with respect to the longer term benefits of building sustainably or at LEED[™] levels, as opposed to providing a cost-only comparison to different levels of certification as do many other studies that exist.

While it was out of scope to conduct a full meta-analysis on the enhanced value of a LEED[™] certified building or the public relations value that certain building codes can generate for a municipality, there is some evidence to support such claims. There have been a limited number of well regarded studies that lend empirical evidence to the enhanced value of sustainable, or green, commercial buildings. While it can be difficult to compare diverse facilities in different regions directly, there is growing evidence to suggest that achieving increased tenant attraction, retention, and rents, as well as higher sales prices can be an outcome of a green building. It appears that, in general, outcomes from the literature are overwhelmingly positive with respect to conservation outcomes and building value.

Included in these studies in the table below is information on general energy savings of LEED[™] buildings compared with non- LEED[™] buildings, rental and sales premiums commanded by LEED[™] buildings, and benefit-cost ratios of building LEED[™] versus non-LEED[™]. To note: the USGBC has recently published a white paper called *High Performance Building Benefits and Investment Costs⁴*, Spring 2014, incorporating a literature review aggregation of evidence-based studies covering: expert knowledge synthesis; population-based studies; project-based studies, and market-based value studies.

⁴ <u>http://www.usgbc.org/sites/default/files/GBIG%20Research%20Anthology-</u> <u>High%20Performance%20Building%20Benefits%20and%20Investment%20Costs-02.24.14.pdf</u>

Table 3: LEED™ Performance and Investment Value Studies

Study	Description
New Buildings Institute. Energy Performance of LEED™ for New Construction Buildings. March 2008.	This report provides a comprehensive view of post-occupancy energy performance of LEED [™] buildings, providing a critical link between intention and outcome for LEED [™] projects. This study analyzes measured energy performance for 121 LEED [™] NC USGBC buildings. The only requirement for inclusion in the study was the ability to provide at least one full year of measured post-occupancy energy usage data for the entire LEED [™] project. The measured performance results show that on average LEED [™] buildings are saving energy, on average 25-30% better than the US national average.
U.S. General Services Administration. Green Building Performance: A Post-Occupancy Evaluation of 22 GSA Buildings. August 2011.	In this white paper, the General Services Administration - the US's largest landlord - conducted a post-occupancy analysis on 22 LEED [™] or ENERGY STAR buildings. The evaluation was comprehensive, measuring environmental performance, financial metrics, and occupant satisfaction. The results of the study confirmed that, on average, GSA's sustainably designed aggregated portfolio findings including 25% less energy use, 19% lower operational costs, 36% lower CO ₂ emissions, and 27% higher occupant satisfaction.
Journal of Real Estate Portfolio Management. Norm Miller, Jay Spivey and Andy Florance. Does Green Pay Off? 2008.	CoStar, a leading real estate data provider, combined with UC San Diego developed the industry's first systematic study based on the entire CoStar US database of over 2.8 million properties. Using LEED [™] and ENERGY STAR certified buildings, they compared these assets to similar buildings filtering based on Class A multi-tenant assets >200,000 SF standing over five stories built since 1970. The authors found the green buildings consistently achieved higher rental rates, occupancy rates, and sales prices. Survey results also showed a \$0.50/SF operating cost advantage, a 50 basis point cap rate differential, and evidence of faster market absorption rates.
Greg Katz. Greening Our World – Costs, Benefits, and Strategies. 2010.	This book analyzes 171 green buildings worldwide, with detailed financial analysis regarding costs and outcomes of sustainable investments. According to the study, green buildings cost roughly 2% more to build than conventional buildings and provide a wide range of financial, health and social benefits. The analysis also determined that with that 2% cost premium, green buildings reduce energy use by an average of 33%.
SBW Consulting, Inc. Achieving Silver LEED [®] : Preliminary Benefit-Cost Analysis for Two City of Seattle Facilities. April 2003.	This study determines the incremental costs and benefits of actions taken, beyond standard practices and the Seattle Energy Code, to obtain LEED [™] credits. The financial effects of these impacts were calculated for each of the six LEED [™] credit categories for both projects, using City-supplied economic parameters, over a 25-year period. From a citywide perspective, the BCR for both projects is 1.19 to 1.72; indicating that overall, LEED [™] certification for these two projects has been cost-effective to the City.

SROI	SUSTAINABLE RETURN ON INVESTMENT	HDR Edimonton
and the Dyn Building: No the Financia	rch. Sustainability namics of Green ew Evidence on al Performance of ce Buildings in the per 2010.	This paper analyzes the economic significance of trends in green building upon the private market for commercial office space. Investments improving the energy efficiency or sustainability of real capital may have implications for competition in the market for commercial space. While rigorously controlling for differences in quality, they found that LEED [™] certified properties command higher rental premiums at 5.8 percent and that the transaction price of LEED [™] certified "green" buildings is higher by 11.1 percent as compared to conventional properties. However, they also found that the energy efficiency premium decays over time: for every year of "label decay", the rental premium decreases by 0.4 percent, and the transaction premium decreases by 1.7 percent per year.
Sustainability and the Dynamics of Green Building. Maastricht University and University of California, Berkley. April 2010.		The authors estimate separately the increment to market rents and asset values enjoyed by buildings which have been certified by the two major rating agencies – the U.S. Green Building Council and U.S. Department of Environmental Protection. The authors relate the estimated premiums for green buildings to the particulars of the rating systems that underlie certification. The analysis of samples of more than 27,000 buildings confirms that the attributes rated for both thermal efficiency and sustainability contribute to increases in rents and asset values. Their analysis showed an average 3% rental rate premium, 8% effective rental rate premium, and sales premium of 13% for ENERGY STAR or LEED [™] certified buildings versus standard buildings.

HDR has compiled a list of various sources that have been useful in providing context for this analysis. In addition to the sources above, which provide some outcomes-based evidence on post-construction benefits, the references below include a list of those studies which provide cost-based evidence on construction and operations. The generalized cost of building LEED[™] studies compare the construction costs, on a LEED[™] credit basis, of LEED[™] certification to similar buildings with no level of LEED[™] certification. The building types include: commercial, academic, laboratories, libraries, community centres, and ambulatory care facilities. The metrics provided in these studies, usually as a '\$/sq ft differential'. An additional group of references compare the actual cost of building LEED[™] based on real reference projects. The sources, study descriptions, and key information can be found below:

Literature	Study Description	Key Study Information
BuildingGreen LLC.	This study estimates the cost of	LEED Credit Costs:
The Cost of	sustainable strategies based on the	Provides credit specific cost metrics on
LEED™: A Report	USGBC LEED [™] NC v2009 rating system.	a per sq.ft. basis, sample calculations as
on Cost	This analysis utilizes a generic	well as cost synergies between other
Expectations to	commercial or institutional building as	related credits.
Meet LEED™ 2009	a benchmark, except where otherwise	Number of Bldgs Analyzed: not
for New	noted. Provides credit specific costing	specified

Table 4: Costs and Outcomes LEED[™] Studies

Construction and Major Renovations (NC v2009). 2010.	information for all LEED™ NC v2009 credits.	Type of Use: modeled as generic LEED NC building
Davis Langdon. Cost of Green Revisited: Reexamining the Feasibility and Cost Impact of Sustainable Design in the Light of Increased Market Adoption. July 2007.	This study compares construction costs of buildings where LEED [™] certification was a primary goal to similar buildings where LEED [™] was not considered during design. The building types analyzed include - academic buildings, laboratories and libraries, community centers and ambulatory care facilities. All costs were normalized for time and location in order to ensure consistency for the comparisons. The overall conclusion is that comparing the average cost per square foot for one set of buildings to another does not provide any meaningful data for any individual project to assess what – if any – cost impact there might be for incorporating LEED [™] and sustainable design. The normal variations between buildings are sufficiently large that analysis of averages is not helpful; buildings cannot be budgeted on averages.	LEED Credit Costs: Provides credit specific cost metrics on a per sq.ft. basis, sample calculations as well as credit feasibility Construction Costs: Cost per square foot was compared between all projects – LEED-seeking and non-LEED. The cost per square foot information is provided by building type. A key study outcome is LEED Gold is often at the lower range of cost per square foot. Number of Bldgs Analyzed: 221 Type of Use: academic, laboratories, libraries, community centres, and ambulatory care
New Buildings Institute. Energy Performance of LEED for New Construction Buildings. March 2008.	This report provides a comprehensive view of post-occupancy energy performance of LEED [™] buildings, providing a critical link between intention and outcome for LEED [™] projects. This study analyzes measured energy performance for 121 LEED [™] NC USGBC buildings. The only requirement for inclusion in the study was the ability to provide at least one full year of measured post-occupancy energy usage data for the entire LEED [™] project. The measured performance results show that on average LEED [™] buildings are saving energy, on average 25-30% better than the US national average.	Energy Use Data: Study provides good general LEED™ data on Energy Use Intensity (EUI) by LEED™ certification level and number of EAc1 credits achieved. Number of Bldgs Analyzed: 121 Type of Use: various NC buildings

SBW Consulting, Inc. Achieving Silver LEED™: Preliminary Benefit-Cost Analysis for Two City of Seattle Facilities. April 2003.	The purpose of this study was to evaluate the impacts of the Sustainable Building Policy on two projects nearing completion in early 2003: the Seattle Justice Center and Marion Oliver McCaw Performance Hall. Study objectives include (a) enumerating the costs and benefits of LEED [™] Silver certification, (b) calculating life-cycle benefit-cost ratios for each project within data constraints, and (c) providing early feedback on the effects of the Sustainable Building Policy.	Methodological Approach: Analysis involved first determining the incremental costs and benefits of actions taken, beyond standard practices and the Seattle Energy Code, to obtain LEED™ credits. Any actions that were so deemed as baseline were not included in the analysis. Major impacts, such as energy savings and occupant productivity improvements, were quantified using the best available information and calculation approaches. The financial effects of these impacts were calculated for each of the six LEED credit categories for both projects, using City-supplied economic parameters, over a 25-year period. Number of Bldgs Analyzed: 2 Type of Use: Justice Centre and Performance Hall
RICS Research. Sustainability and the Dynamics of Green Building: New Evidence on the Financial Performance of Green Office Buildings in the USA. October 2010.	This paper analyzes the economic significance of trends in green building upon the private market for commercial office space. Investments improving the energy efficiency or sustainability of real capital may have implications for competition in the market for commercial space: tenants may enjoy pecuniary and non-pecuniary benefits (e.g. lower utility bills, higher employee productivity) and there may be economic benefits to investors (e.g. higher rents, lower risk premiums).	Methodological Approach: This study gathers and analyzes a panel of certified green buildings and nearby control buildings. These buildings were matched to detailed hedonic and financial information maintained about these buildings. <u>Impact of LEED on Rental Rates:</u> While rigorously controlling for differences in quality, they found that LEED [™] certified properties command slightly higher rental premiums of 5.8 percent, but the effective rental premium is not significantly more than that at 5.9 percent. The transaction price of LEED [™] certified "green" buildings is higher by 11.1 percent as compared to conventional properties. However, they also found that the energy efficiency premium decays over time: for every year of "label decay", the rental premium decreases by 0.4 percent, and the transaction premium decreases by 1.7 percent per year.

		Construction Cost Data:		
		Construction Cost Data: A typical rule of thumb is to budget 3%		
		for hard costs and 1 - 1.5% for soft		
		costs for LEED Certification, where soft		
		costs include LEED™-Specific Design		
		Costs and		
	Outline on additional construction	LEED [™] Documentation Costs.		
DNV. LEED™	costs for LEED [™] certification as well as			
Compliance	expected utility savings. Provides rule	Additional construction cost for LEED [™] :		
Methods: Cost and	of thumb average additional costs and	Certified building = 2.5%		
Return on	payback for LEED™ which may be	LEED™ Silver = 3.5%		
Investment.	useful to help benchmark future	LEED™ Gold = 3-5%		
investment.	studies.			
		Payback Period:		
		The most common payback period for		
		LEED [™] Silver is stated to be between 3-		
		7 years. For large complicated		
		projects types, the payback period can		
		be 10 years in the extreme cases		
	The focus of this analysis is to identify			
	the specific costs and benefits	Methodological Approach:		
	associated with moving a project from	This study takes a similar approach to		
Deloitte. LEED™	current baseline level to LEED [™] Silver	HDR by removing LEED [™] points to		
Gold Certification	and LEED [™] Gold certification levels.	create a hypothetical LEED [™] Silver		
Cost Analysis:	The building analyzed is Holy Trinity	building from a LEED™ Gold building.		
Alberta	Academy, a senior high school in	Results are presented as absolute cost		
Infrastructure.	Alberta. Considers project capital cost	and percent increase above baseline		
April 2009.	as well as lifecycle costs including:	cost for the HTA reference building.		
	periodic replacement costs,	However, little detail is provided on		
	maintenance costs and energy costs	LEED [™] credit specifics.		
	over a 30-year period.			
		Building Types Analyzed:		
		- A new mid-rise federal Courthouse		
		(five stories, 262,000 GSF, including		
	The report provides a detailed and	15,000 GSF of underground parking;		
	structured review of both the hard cost	base construction cost is approximately		
	and	\$220/GSF)		
GSA. LEED™ Cost	soft cost implications of achieving	- A mid-rise federal Office Building		
Study Final Report.	Certified, Silver, and Gold LEED [™]	modernization (nine stories, 306,600		
October 2004.	ratings for two GSA building types,	GSF, including 40,700 GSF of		
	using GSA's established design	underground parking; base		
	standards as the point of comparison.	construction cost is approximately		
		\$130/GSF). Information from the Office		
		Building may be relevant to Water		
		Centre.		

Ceres. Energy Efficiency and Real Estate: Opportunities for Investors. 2010.	This report outlines the business case, in qualitative terms, that investing in energy efficiency enhances value in real estate portfolios. It is targeted towards property investment companies and real estate equity and funds investors. The report concludes taking the steps to reduce energy use makes financial sense. The report lays out the steps investors can take to improve energy efficiency, and presents best practices for different types of investments.	Construction Cost Data: USGBC data show that achieving its LEED [™] standard accounts for between only 0 and 7 percent of total costs (depending on certain factors such as the level of certification and building size).
Mapp, C. et al. The cost of LEED™: An Analysis of the Construction Costs of LEED and Non- LEED™ Banks. November 2011.	This study is an analysis of the initial building costs for two LEED [™] banks and eight non- LEED [™] banks with similar building types and sizes located in western Colorado. The purpose of this study was to compare the costs of these banks, and to assess costs directly associated with LEED [™] certification. The analysis examines total building costs, square footage costs, soft costs, and hard costs. The study finds that the building costs of the LEED [™] banks are similar to and within the same ranges as non- LEED [™] banks. Additionally, the direct cost associated with seeking LEED [™] certification is estimated to be below 2% of the total project cost.	<u>Construction Cost Data:</u> Provides comparison of hard costs and soft costs per sq.ft. However, the location of the projects and building type limit the relevance of the data.
KEMA. Managing the Cost of Green Buildings. October 2003.	Explores general cost-saving strategies for green building, and explores the cost issues associated with four specific building types in the context of the green building rating systems most commonly used for that sector.	Building Types Analyzed: K-12 schools, Laboratories, Libraries, Multi-family Affordable Housing. Details specific cost saving measures for the building types identified. However, there is no credit specific information.
Weber, C. et al. Cost-Benefit Analysis of LEED™ Silver Certification for New House Residence Hall at Carnegie Mellon University. Department of Civil and Environmental Engineering:	The project assessed and quantified the intangible benefits to the university arising from the LEED [™] Certification and the benefits to the residents through a combination of expert elicitation and surveying. For the purpose of quantification, the benefits were classified into four groups: informal education of the residents, publicity benefits to the university, building performance benefits, and direct student health and performance	<u>Methodological Approach:</u> WTP survey related to use of green building. In this case living in the Carnegie Mellon residence. Potential to use the framework to formulate our questionnaire, however its topic is likely too specific.

Carnegie Mellon. 2004.	benefits. A fifth group of benefits was added by two of the experts—internal education and pride amongst students and staff of Carnegie Mellon.	
Corps, Chris. Green Value: The Value of Sustainability. Asset Strategics Ltd. May 25, 2006.	General presentation on the value of green building from an asset management, acquisition, disposition, and development view point. Limited information on LEED [™] and valuation of LEED [™] credits or other LEED [™] elements.	Recommendation on Green ValuationMethodologies:- Direct comparison: difficult orimpossible to properly adjust- Income approach: most suitable butdifficult to use- Cost approach: potentially harmful tocorrect life cycle valuation- Alternate approaches: triple bottomline, full cost accounting, etc.
Industry Canada. A Business Case for Green Buildings in Canada. March 2005.	The purpose of this document is to clearly and holistically define the state of the green building industry in Canada, and to provide a basis for recognizing the many unique and tangible benefits a green building might offer, as well as the challenges and barriers facing the Canadian industry. This Business Case reflects an extensive search of published and unpublished papers and studies focusing on the nature and benefits of green buildings.	Methodological Approach: The Business Case reflects an extensive search of published and unpublished papers and studies focusing on the nature and benefits of green buildings. Most of the referenced information is from North America, although a few selected European studies and papers were also included. All of the information was assessed in terms of its relevance to Canada, and only those studies and sources considered applicable, or relevant, have been included.
Lawrence Berkeley National Laboratory. The Cost-Effectiveness of Commercial- Buildings Commissioning: A Meta-Analysis of Energy and Non- Energy Impacts in Existing Buildings and New Construction in the United States. December 2004.	Designed as a "meta-analysis," this report compiles and synthesizes extensive published and unpublished data from buildings commissioning projects undertaken across the United States over the past two decades, establishing the largest available collection of standardized information on commissioning experience.	Methodological Approach: We develop a detailed and uniform methodology for characterizing, analyzing, and synthesizing the results. For existing buildings, we found median commissioning costs of \$0.27/ft2, whole-building energy savings of 15 percent, and payback times of 0.7 years. For new construction, median commissioning costs were \$1.00/ft2 (0.6 percent of total construction costs), yielding a median payback time of 4.8 years Number of Bldgs Analyzed: 224

	The authors estimate separately the	Methodological Approach:
	increment to market rents and asset	We employ an analogous research
	values enjoyed by buildings which have	design to document precisely the very
	been certified by the two major rating	substantial economic returns to energy
Sustainability and	agencies – the U.S. Green Building	efficiency and sustainability in
the Dynamics of	Council and U.S. Department of	commercial property markets using a
Green Building.	Environmental Protection. The authors	large cross section of office buildings
Maastricht	relate the estimated premiums for	which had been "certified" by
University and	green buildings to the particulars of the	independent rating agencies. Their
University of	rating systems that underlie	analysis showed an average 3 percent
California, Berkley.	certification. The analysis of samples of	rental rate premium, 8 percent
April 2010.	more than 27,000 buildings confirms	effective rental rate premium, and sales
	that the attributes rated for both	premium of 13 percent for Energy Star
	thermal efficiency and sustainability	or LEED certified buildings versus
	contribute to increases in rents and	standard buildings.
	asset values.	Number of Bldgs Analyzed: >20,000

2.2 Incremental Credit Determination & Determining Input Values

HDR Architecture Associates Inc. engaged in an analysis to determine the possible incremental and binary performance differences between the LEED[™] designated case study buildings, and the alternate scenarios A and B, in which the same buildings would hypothetically be constructed to the level of construction deemed to be "standard" (Scenario A) or hypothetically constructed to LEED[™] Gold standards (Scenario B).

Scenario A: Compares a LEED[™] Silver facility to the same building if it were hypothetically built to the standard level construction that would be expected for a commercial/institutional building in the city of Edmonton. It should be noted that the City of Edmonton would never really build a code minimum building and would always strive for some degree of sustainability. As such, while the term "standard construction" is used throughout this report to describe the alternate case in Scenario A, the minimum expected industry and best-practice factors are considered in the incremental credit analysis and are included in this term. It is anticipated that while there would be initial capital cost savings realized in foregoing LEED[™] (certification and registration fees and consultant premiums, sustainable building strategies and technologies) the green design ambitions, efficiency innovations, and structured verification metrics required to achieve LEED[™] Silver standing would result in a facility that performs at incrementally higher levels of optimization relating to water use, energy consumption, and occupant productivity, amongst others. Scenario A seeks to determine which LEED[™] requirements would not have been pursued in the Standard Construction alternative building, due to budget, schedule or, technical challenges and the cost-benefit analysis of achieving those specific credits.

Scenario B: Compares a LEED[™] Silver facility to the same building if it were to achieve a LEED[™] Gold rating. The difference between LEED Gold and LEED silver in the instance of the 3 case studies was 8 - 10 credits. As such additional funds, design strategies, and incrementally higher levels of performance would then be required to gain an additional 8 - 10 credits and increase the building's standing to the LEED[™] Gold level. A structured analysis of historical CaGBC data consisting of the following steps reveals a pattern that indicates which credits are most commonly achieved by LEED[™] Gold facilities that are not achieved by LEED Silver facilities:

- 1. Obtained data from the CaGBC providing the average number of projects achieving each credit type by rating level (LEED[™] Certified, LEED[™] Silver, LEED[™] Gold, and LEED[™] Platinum).
- 2. Calculated the difference between the percent of LEED[®] Gold and LEED[®] Silver projects that achieved each credit type.
- 3. Rank ordered the credit types by highest to lowest credit differential. Those credits with the highest differentials are the most likely credits to be achieved in LEED[™] Gold buildings, while not being attained in LEED[™] Silver buildings.

The top 10 credits from this list were selected as the basis for the incremental Silver versus Gold comparison. Where not appropriate to the facility, already achieved by the facility, or otherwise found invalid through additional project specific research, alternative credits from the list of high-differential credits were removed. The Fort Edmonton Park Administration building and the South-West Edmonton Police Station both achieved/anticipate a LEED[™] Silver rating, and the incremental credit determination was as per the above. Ellerslie Fire Station however, anticipates achieving a LEED[™] Gold rating, which necessitated an inverse approach (of the above methodology) to determine which 8 credits, corresponding to the list of high-differential credits, would have *not* been pursued resulting in a hypothetical LEED[™] Silver facility.

The term 'incremental' is used throughout this report in the context that a particular credit affected by the LEED[™] certification level realized a non-binary result. In some instances, the impact would be considered binary; either a bicycle rack was installed or it was not. In other instances however, such as energy and water savings or use of recycled content the marginal increase in performance (e.g. 40% savings versus 30% savings) is referred to as an 'incremental' difference.

The analysis consisted of a review of three case studies of City of Edmonton projects completed in recent years that achieved or are currently targeting LEED[™] certification. The three projects were selected from a list of five projects identified in the April 22nd 2013 Audit Committee report titled "Project Cost Drivers for the City of Edmonton. To ensure consistency of comparative variables, the projects reviewed were all greenfield, new construction, and all used the LEED[™] Canada NC 1.0 rating system.

The analysis conducted by HDR Architecture Associates, Inc. was a three-stage approach. Stages 1 & 2 are illustrated below, while stage 3 is detailed in section 2.4 of this report.

Stage 1: Meta Analysis

In the analysis of Scenario A: Silver versus Standard Construction, the consultant team compiled a list of all LEED[™] credits achieved or anticipated by each of the case study projects in a single matrix. The team assessed the commonalities across all projects, and in leveraging experience, expertise, and preliminary input from City of Edmonton staff, and project design teams, ruled out credits that likely would have still been achieved (with no incremental performance difference) in a typically constructed building. HDR reviewed this preliminary list of remaining credits, and analyzed the identified credits individually for each project to determine the approach the project teams had taken, what was achieved, and what may have been done differently if the project teams were not pursuing LEED[™] certification. A final matrix was generated based on this analysis to determine which credits would realistically show an incremental or binary performance difference in the absence of LEED[™]. In other words, this list is referring to which credits would have been impacted, realized differently, or not realized at all if LEED[™] was not pursued. A summary of the incremental credits is as follows:

LEED™ Credit	Name		
SSc4.4	Alternative Transportation: Parking Capacity		
SSc7.2	Heat Island Effect: Roof		
WEc3.2	Water Use Reduction: 30%		
EAc1	Optimize Energy Performance		
EAc3	Best Practice Commissioning		
MRc5	Regional Materials: 20%		
EQc3.2	CIAQ Management: Pre-Occupancy		
EQc4.4	Low Emitting Materials: Composite Wood & Laminates		
EQc5	Indoor Pollutant Control		
EQc6.2	Controllability of Systems: Non-Perimeter		
EQc8.1	Day lighting: Daylight 75% of Spaces		
EQc8.2	Views: Views for 90% of Spaces		

Table 5: Incremental LEED[™] NC Credits - Scenario A: Silver vs. Standard Construction

IDc1.1	Green Furniture								
IDc2	LEED AP								
In the analysi	s of Sconario P:	Cold vs	Silvor	tha	concultant	toom	applied	tho	mota analyci

In the analysis of Scenario B: Gold vs. Silver, the consultant team applied the meta-analysis methodology described above; reviewing historical CaGBC data and generating a list of high-differential credits between LEED[™] Silver and LEED[™] Gold buildings. Using this list as a starting point, the consultant team cross-referenced the case study projects and eliminated credits that had already been achieved, or are targeted at the Silver level, or that appeared to be consistent with the building's concept design and typology and not evidently influenced by the LEED[™] standard. A final matrix was generated indicating which credits were not achieved or targeted at LEED[™] Silver level, but could have been achieved at a hypothetical LEED[™] Gold level. As noted, for Ellerslie Fire Station, rather than determining which additional credits might have been achieved the exercise consisted of determining which credits would *not* have been targeted if the project had only attempted a LEED[™] Silver rating. A summary of the incremental credits is as follows:

LEED™ Credit	Name		
SSc5.1	Reduced Site Disturbance: Protect/Restore Open Space		
SSc6.1	Stormwater Management: Rate & Quantity		
SSc6.2	Stormwater Management: Treatment		
WEc2	Innovative Waste Water		
EAc1	Optimize Energy Performance (beyond results at Silver level)		
EAc5	Measurement & Verification		
MRc5	Regional Materials: 20%		
MRc7	Certified Wood		
EQc1	Carbon Dioxide (CO2) Monitoring		
EQc2	Ventilation Effectiveness		
EQc6.2	Controllability of Systems: Perimeter Spaces		
IDc1.2	Exceptional Performance: WEc3: Water Use Reduction (40%+)		

Table 5a: Incremental LEED[™] NC Credits - Scenario B: Gold vs. Silver

Stage 2: Interviews & Research

Upon completion of a finalized credit matrix, and thorough reviews of the LEED[™] documentation for each project provided by the Client, the consultants developed a list of probable incremental performance differences relating to each of the credits that were identified as those that would have been impacted, realized differently, or not realized at all if LEED[™] was not pursued.

Assumptions made in stage 1 were clarified via interview questions with each of the project teams, as well as City of Edmonton project managers. Credits previously thought to be incremental that project teams suggested were not, were re-reviewed and removed from the credit matrix if appropriate.

Additionally, the consultants undertook a literature review of 3rd party analyses relating to the identified credits, and compared the findings of these studies with the assumptions made in stage 1, and the reinforcing information provided in stage 2. Where inconsistencies existed, the assumptions were re-examined, and in some cases deemed inappropriate/not applicable, while in others expanded rationale was developed to address the project specific context. The information derived from the literature

review provides strong support in determining the inputs for the cost benefit analysis in stage 3 (described in the Input Values section, 2.4, below).

Ultimately, it was determined through these two stages that the credits analyzed for each building are as follows, with the number of credits listed for each applicable category:

Table 6: Incremental Credits Valued – Scenario A: Silver vs. Standard Construction

	D™ Credits Included in the SROI Analysis nario A: Silver vs. Standard Construction	Ellerslie Fire Station No. 27	Fort Edmonton Park Admin	S-W Edmonton Police Services
Sustaina	ble Sites			
Credit 4.4	Alternative Transportation: Parking Capacity		1	
Credit 7.2	Heat Island Effect: Roof	1		1
Water Ef	ficiency			
Credit 3.2	Water Use Reduction: 30%	1	1	1
Energy &	Atmosphere			
Credit 1	Optimize Energy Performance	4	3 ¹	6
Credit 3	Best Practice Commissioning	1	1	1
Material	s & Resources			
Credit 5	Regional Materials: 20% Extracted and Manufactured Regionally		1	
Indoor E	nvironmental Quality			•
Credit 3.2	Construction IAQ Management Plan: Testing Before Occupancy	1	1	1
Credit 4.4	Low-Emitting Materials: Composite Wood and Laminate Adhesives	1	1	1
Credit 5	Indoor Pollutant Control	1	1	1
Credit 6.2	Controllability of Systems: Non-Perimeter Spaces		1	
Credit 8.1	Daylighting & Views: Daylight 75% of Spaces	1	1	1
Credit 8.2	Daylighting & Views: Views for 90% of Space	1	1	1
Innovatio	on & Design Process	<u></u>		·
Credit 1	Green Furniture		1	1
Credit 2	LEED AP	1	1	1
Number Silver Lev	of LEED™ Credits Analyzed and Achieved at ∕el	Ellerslie Fire Station No. 27	Fort Edmonton Park Admin	S-W Edmonton Police Services

Incremental Credits Included in SROI Analysis	10	13	11
Total Credits Achieved (or Targeted if not yet Achieved)	38	36	35

¹ Under LEED[™] NC v1.0 the metric used for EAc1 scoring is energy *cost* savings. The project team for Fort Edmonton elected to use 'market' electricity costs rather than LEED[™] defaults and as such achieved 6 points under EAc1. However, due to the valuation methodologies utilized in this analysis, Energy Consumption values must be evaluated for calculation purposes. As such, the number of points indicated above (3) is the adjusted value corresponding to the energy consumption savings and the number of points that would have been achieved had the team used standard default LEED[™] energy cost values.

Scenario B: The credits analyzed for each building, deemed to be of an incremental or binary difference to the alternate case, both those actually achieved at Gold level and, in the case of Fort Edmonton and SWEPS, those hypothetically achieved at Gold level are as follows, with the number of credits received in each applicable category. These do not represent all the credits earned by the building towards certification.

* All credits for Fort Edmonton and SWEPS are hypothetical at LEED Gold Level. Credits indicated for Ellerslie Fire Station are credits actually achieved, deemed to be beyond the LEED Silver scenario.

LEE	D™ Credits Included in the SROI Analysis Scenario B: Gold vs. Silver	Ellerslie Fire Station No. 27	Fort Edmonton Park Admin	S-W Edmonton Police Services
Sustaina	ble Sites			
Credit 5.1	Reduced Site Disturbance: Protect or Restore Open Space	1	1	1
Credit 6.1	Stormwater Management: Rate & Quantity	1		1
Credit 6.2	Stormwater Management: Treatment	1		1
Water Ef	ficiency			
Credit 2	Innovative Wastewater Technology	1	1	1
Energy 8	Atmosphere			
Credit 1	Optimize Energy Performance	7	6 ¹	9
Credit 5	Measurement & Verification		1	
Material	s & Resources			
Credit 5	Regional Materials: 20% Extracted and Manufactured Regionally			1
Credit 7	Certified Wood		1	
Indoor E	nvironmental Quality			
Credit 1	Carbon Dioxide (CO2) Monitoring		1	

SROI SUSTAINABLE HOR

Credit 2	Increase Ventilation Effectiveness	1	1	1
Credit 6.1	Controllability of Systems: Perimeter Spaces	1		1
Innovatio	on & Design Process			
Credit 1.2	Exceptional Performance: WEc3: Water Use Reduction	1	1	1
Number Gold Lev	of LEED™ Credits Analyzed and Achieved at el	Ellerslie Fire Station No. 27	Fort Edmonton Park Admin	S-W Edmonton Police Services
Gold Lev			Edmonton	

¹ Under LEED[™] NC v1.0 the metric used for EAc1 scoring is energy *cost* savings. The project team for Fort Edmonton elected to use 'market' electricity costs rather than LEED[™] defaults and as such achieved 6 points under EAc1 at Silver. However, due to the valuation methodologies utilized in this analysis, Energy Consumption values must be evaluated for calculation purposes. As such, the number of points indicated above (6) is the adjusted value corresponding to the projected increase in energy consumption savings at Gold level and the number of points that would have been achieved had the team used standard default LEED[™] energy cost values.

DI SUSTAINABLE HOR

2.3 Develop Model Logic

The methodology for the various benefits and costs is presented graphically in the form of a flow chart called a "structure and logic model" (S&L). Such models provide a graphical illustration of how the various inputs combine to determine the benefit or cost evaluated. They are intended to provide a transparent record of how each impact is calculated for each LEED[™] credit. These can be found in Appendix D.

2.4 Determine Input Values

The triple bottom line valuation methodology and inputs are described in the following section of this report, while this section focuses exclusively on the base data from which the inputs used in the costbenefit model are derived. This exercise was completed by HDR Architecture, and relies on several variables and methodologies of numeration which are illustrated below:

Table 1. Variables and Methodologies

Variables	Resources/Methodologies
A: Capital Costs	1: Quantity Estimation & Costing
B: Non-Energy O&M Costs/Savings	2: 3 rd Party Literature
C: Electricity & Natural Gas Savings	3: LEED [™] Submittal Data
D: Potable Water Savings	4: Project Team/Client Information
E: Tree Benefits	5: Consultant Rationale
F: Storm Water Management Benefits	
G: Reduced Truck Miles	
H: Reduced SOV Miles	
I: Lifecycle Benefits	

As described in section 2.2, while various credits may be impacted by LEED[™] certification in a binary fashion (Eg. bicycle racks) the impacts on others such as energy and water savings or the use of recycled content in buildings materials are impacted in a more marginal sense. While a project designed to the Standard Construction level may have achieved 20% water savings, simply due to best practice designs, the added incentive of achieving a LEED[™] rating may have resulted in that facility achieving 30% water savings instead. An energy savings of 30% over the model national energy code in a LEED[™] Silver scenario, may have increased to 40% in a building designed to meet LEED[™] Gold. This marginal difference between the two scenarios is referred to as an 'incremental' impact. Each credit identified as realizing an incremental or binary impact, is analysed in the project specific context of each case study. Each variable is assigned a monetary or numeric value for each credit, leveraging one or more of the above resources and methodologies. The general application of the above methodologies and resources can be summarized as follows:

A. Capital Costs

- 1. Quantity Estimation & Costing: Standard construction quantity surveying and estimation techniques are utilized to quantify and price project specific design elements that may have been omitted in the alternative case scenarios. Where available, real project costs (schedule of values) are leveraged, or in instances where schedules of values are insufficiently detailed, standard catalogue cost data (RS Means) is used as supplemental information.
- 2. 3rd Party Literature: 3rd party literature is leveraged to identify industry averaged cost

premiums associated with certain LEED[™] credits. Major works relied upon are referenced in section 2.0 of this document.

- 3. **Project Team/Client Information**: In instances where additional services are required by the LEED[™] certification process, IE. Consultant fees for enhanced commissioning or LEED[™] consulting, costs have been provided directly by the project teams or the Client.
- 4. **Consultant Rationale:** Where insufficient Client/project team or 3rd party data exists, the consultant has averaged the related *known* costs for the other case studies, and extrapolated the value on per square foot basis for the projects missing the relevant information.

B. Non-Energy O&M Costs/Savings

- Quantity Estimation & Costing: Project specific O&M impacts relating to increased maintenance (costs) resulting from certain features, or decreased maintenance (savings) resulting from others are calculated on a per item or per square foot basis utilizing data from proxy facilities managed by the City of Edmonton or Industry averages where local data is not available. The sum of the costs and benefits results in a net monetary outcome in the Non-Energy O&M costs.
- 2. **Project Team/Client Information**: The City of Edmonton has provided information on real maintenance related costs, for each credit where relevant or in many cases confirmed there is no operating cost premium.
- 3. **3rd Party Literature:** 3rd party literature is leveraged to identify industry averaged cost premiums or savings associated with certain LEED[™] credits. Major works relied upon are referenced in section 2.0 of this document.
- 4. **Consultant Rationale:** In some instances where 3rd party or project specific data is not available the consultant has drawn upon professional experience and knowledge of material science (as verified by experience of City of Edmonton's project managers) to determine a reasonably anticipated incurred maintenance cost resulting from the premature failure of systems and assemblies, such as the delamination of custom casework due to the less robust nature of water based adhesives.

C. Electricity & Natural Gas Savings

- 1. **3rd Party Literature:** 3rd party literature is leveraged to identify industry averaged energy cost savings (as a %) associated with certain LEED[™] credits and then multiplied by project energy data derived from LEED[™] submittals.
- LEED[™] Submittal Data: Energy modelling data provided as part of LEED[™] submittal package is analysed and attributed to components of the project energy strategy. Technologies and envelope components determined to result in incremental performance differences from the alternate case scenarios are removed from the modelled data and the difference is described as the potential incremental performance benefit.
- 3. **Project Team/Client Information**: In some instances, the LEED[™] submittal data was incomplete and insufficient for energy model analysis. To address this shortfall, real building utility data provided by the the City of Edmonton was used instead to determine the real-case performance scenario, and adjusted by the total projected energy savings to establish a hypothetical baseline using LEED[™] default values. Essentially, HDR completed a similar LEED[™] submittal exercise to that which the project team will be completing themselves, except in reverse. Where not immediately apparent from submittal data, or City of Edmonton information, the project teams have indicated via interviews what technologies were recommended earlier in the design process, that may have not been approved/implemented had the project not pursued LEED[™] due to time and cost saving measures. Similarly to the above, these technologies, systems and components can be attributed to portions of the modelled performance and subtracted from

the data to determine the performance benefit.

D. Water Savings

- LEED[™] Submittal Data: Projected water use data provided as part of LEED[™] submittal package is analysed and attributed to water saving fixtures and technologies used as part of the project water conversation strategy. The difference is realized as water savings exceeding 20% water use reduction (over LEED[™] defined baseline). 20% water use savings is considered the alternate case for the purposes of this report due to the ubiquity of 'low-flow' water saving fixtures which would have likely been installed regardless of LEED[™] requirements.
- 2. Consultant Rationale: Similarly to shortfalls in submittal data regarding energy performance, water savings performance was found to be incomplete as well in one instance. A complete set of working drawings was provided by the City of Edmonton, including mechanical drawings which provided a schedule of fixtures, and all required information on other water savings strategies. Despite missing information, HDR was able to use the known number of FTE's, the known number of fixtures and their respective flow ratings, and the expected volumes provided by rainwater harvesting to complete the LEED[™] submittals and arrive at the projected water savings, in accordance with LEED[™] baseline case default values.

E. Tree Benefits

- 1. Quantity Estimation & Costing: Tree benefits are a category exclusive to sustainable sites related credits, and are monetized under SSc5: Protect/Restore Open space. As such, these benefits are only realized in the Scenario B analysis. For Ellerslie Fire Station, the actual landscape drawings can be utilized to determine the quantity and types of trees. In the case of Fort Edmonton and SWEPS, a hypothetical planting scenario was developed (see 'consultant rationale' below).
- 2. 3rd Party Literature: The benefit monetization for project trees relied primarily on the paper 'Municipal Forest Benefits and Costs in Five US Cities' (McPherson et Al). This paper, published in the Journal of Forestry leverages an urban forest management tool, developed by the US Forestry Service titled 'STRATUM'. This tool provides ranged monetary cost and benefit values for various sizes of trees, capturing myriad benefits in a broad scope context. The STRATUM model is the successor of the popular 'STREETS' model that the City of Edmonton has used in the past and as such, uses the same inventory data.
- 3. **Consultant Rationale:** As this tree benefits category is exclusive to scenario B analysis, hypothetical planting schemes were developed for Fort Edmonton and SWEPS. While this credit is distinct from Stormwater management, the implementation of on-site storm water management strategies, and the inclusion of project trees work in concert together as part of the general landscape. The planting density of the bioswale feature included in Ellerslie was extrapolated on a square foot basis to determine a hypothetical number of trees that would be included had SWEPS and Fort Edmonton included swales, or otherwise attempted to achieve credit SSc5 through the creation of natural habitat. A detailed description of the hypothetical landscape scenarios can be found in Appendix B of this report.

F. Stormwater Management Benefits

- 3rd Party Literature: Data on annual precipitation was made available by Environment Canada and is Edmonton specific. Data regarding concentrations of total suspended solids, typical of various run-off surfaces (parking lot, grass, roadway, etc.) was taken from a variety of sources and included as a range to account for variability. Proxy data regarding the cost of low-impact storm facilities was leveraged from a previous study done for the City of Calgary by HDR.
- 2. Project Team/Client info: The numeration of Storm water management benefits is driven by the reduction in annual flow (L/Yr). This, in turn, can be used to determine several other factors

including total suspended solids, total phosphorous, nitrogen and other containments. In facilities that incorporated storm water management strategies, drawings provided by the Client could be used to determine size, volume and using annual precipitation calculations noted above, total diversion capacity of management features, and surface areas from which the flow is diverted.

3. Consultant Rationale: Similarly to tree benefits, the stormwater management benefit category is exclusive to the analysis of Scenario B. As such, a hypothetical storm management scenario was developed for SWEPS, which is described in greater detail in Appendix B of this report. Fort Edmonton's location and current storm flow dynamics limit the practicability of implementing on-site stormwater management system. It was determined that these credits would not be pursued in a hypothetical scenario due to the relatively little expected return as the majority of stormwater is already infiltrated on-site, just not within the project boundaries as defined in the LEED[™] submittal.

G. Truck Miles Saved

- 1. LEED[™] Submittal Data: LEED[™] credit MRc5 relates to regionally sourced materials. The benefit of this practice can be monetized by assessing the potential reduction in trucking distances and the associated triple bottom line impacts. The LEED[™] submittal data provided indicates distances from which each of the major materials has been sourced. This data is used to determine total truck Km related to project materials.
- 2. Consultant Rationale: LEED[™] requires the project team to determine the distance from the point of extraction of a raw material to the project site and the distance from the point of manufacture to the project site. However, LEED[™] does not require an evaluation of the distance *between* the point of extraction and the point of manufacture. To address this gap in the available data, the consultants elected to look exclusively at distances between the point of manufacture and the project site. To determine the potential incremental difference in mileage resulting from large proportions of building materials being regionally sourced, the consultant undertook a comparative review of four classifications of materials across each of the projects in which the submittal data was available:
 - a. High Value Added: Pre-fabricated phenolic toilet partitions
 - b. Medium Value Added: Polyisocyanurate Insulation
 - c. Medium Value Added: Roofing membranes
 - d. Commodity: Steel

For each of the material categories, the specified product was compared to the next largest manufacturer of the same material. The distances between the project site and the manufacturing location for the specified products compared to the distance between the project site and the manufacturing location of the competing products were averaged to determine an incremental distance saved as a percentage value. This percentage is then applied to the project specific truck mileage derived from the LEED^M submittal data. In instances where project specific data on truck mileage was insufficient, a \$/km value was determined using *known* data from the other projects and extrapolated to complete the missing information.

H. Single Occupant Vehicle (SOV) Miles Saved

1. **Project Team/Client Information:** Fort Edmonton, in pursuit of credit SSc4.4: Alternative Transportation: Parking Capacity implemented a carpooling program in which staff who elected to carpool together would be given access to premium parking spot. Additionally, building management would provide a sign-up sheet and encourage staff to consider carpooling. Email correspondence with building managers showed that two employees did begin carpooling

together after the program was announced. While the premium parking spot wasn't necessarily the incentive, the management announcement and sign-up sheet induced a behavioural change, resulting in these co-workers discussing carpooling and modifying their mode of commute. The distance saved per day was provided directly by the employee in question.

I. Lifecycle Benefits

1. Quantity Estimation & Costing: Life cycle benefits derived from the use of more robust materials are estimated as the difference between the replacement costs for the installed components versus the replacement costs of what would likely be installed in the alternative scenario, over the study period, plus the remaining residual value beyond the study period to the end of the building lifecycle. The benefits are either realized as avoid replacement capital, or as residual value in the useful life of the component.

The general application of methodologies as described above was used to determine all project specific inputs to generate the base data required to complete the SROI model. The methodologies indicated above were applied to each project and each credit as illustrated in the following data matrix:

	Ellerslie Fire Station	(All Credits: Scenario A + B)
Credit	Variable	Methodology/Source
	Capital Costs	Quantity Estimation/Costing
SSc5	Non-Energy O&M	3 rd Party Literature
	Tree Benefits	3 rd Party Literature
	Capital Costs	Included in SSc5 Cost
SSc6	Storm Water Mgmt	3 rd Party Literature
	Capital Costs	3 rd Party Literature
WEc2	Non-Energy O&M	3 rd Party Literature
	Water Savings	LEED Submittal Data
	Capital Costs	Quantity Estimation/Costing
WEc3.2	Non-Energy O&M	3 rd Party Literature
	Water Savings	LEED Submittal Data
		Quantity Estimation/Costing
	Capital	3 rd Party Literature
EAc1	Non-Energy O&M	Client Information
		3 rd Party literature
	Electricity & Gas	LEED Submittal Data
	Capital Costs	Client Information
EAc3	Non-Energy O&M	3 rd Party literature
	Electricity & Gas	3 rd Party literature
	Capital Costs	Negligible
EQc2	Non-Energy O&M	Captured under EAc1
	Electricity & Gas	Negligible w/ Heat Recovery
FO - 2 - 2	Capital Costs	Building Flush Out (Schedule impact)
EQc3.2	Electricity	Negligible Fan energy

Table 2. Credit Evaluation Matrix – Ellerslie Fire Station

50-4.4	Capital Costs	Quantity Estimation/Costing
EQc4.4	Non-Energy O&M	Consultant Rationale
50-5	Capital	Quantity Estimation/Costing
EQc5	Non-Energy O&M	Insufficient information to quantify
EQc6.1	Capital	Quantity Estimation/Costing
	Capital	Quantity Estimation/Costing
EQc8	Non-Energy O&M	3 rd Party Literature
	Electricity & Gas	Captured under EAc1
	Capital	Captured Under WEc3/WEc2
IDc1.2 (WEc3)	Non-Energy O&M	Captured Under WEc3/WEc2
	Water Savings	LEED Submittal Data
IDc2	Capital	Client Information

Table 3. Credit Evaluation Matrix – Fort Edmonton Park Administration

Fort Edmonton Park Administration Building (All Credits: Scenario A + B)		
Credit	Variable	Methodology/Source (#)
Sc4.4	Reduced SOV Miles	Client Information
SSc5	Capital Costs	Quantity Estimation/Costing Consultant Rationale
	Non-Energy O&M	3 rd Party Literature
	Tree Benefits	3 rd Party Literature
	Capital	Quantity Estimation/Costing
Sc7.2	Non-Energy O&M	3 rd Party Literature
	Lifecycle Benefits	Quantity Estimation/Costing
	Capital Costs	3 rd Party Literature
WEc2	Non-Energy O&M	3 rd Party Literature
	Water Savings	LEED Submittal Data
	Capital Costs	3 rd Party Literature
WEc3	Non-Energy O&M	3 rd Party Literature
	Water Savings	LEED Submittal Data
	Capital Costs	Quantity Surveying/Costing 3 rd Party Literature
EAc1	Non-Energy O&M	Client information
	Electricity & Gas	LEED Submittal Data
	Capital Costs	Client Information
EAc3	Non-Energy O&M	3 rd Party Literature
	Electricity & Gas	3 rd Party Literature
	Capital Costs	3 rd Party Literature
EA5	Non-Energy O&M	3 rd Party Literature
	Electricity & Gas	Captured under EAc1
	Capital Costs	Negligible
MRc5	Reduced Truck Miles	LEED Submittal Data Consultant Rationale

MRc7	Costs = Benefits (No Impact)				
EQc1	Capital Costs	3 rd Party Literature			
EQc1	Non-Energy O&M	3 rd Party Literature			
	Capital Costs	Negligible			
EQc2	Non-Energy O&M	Captured under EAc1			
	Electricity & Gas	Captured under EAc1			
F0-2 2	Capital Costs	Building Flush Out (Schedule impact)			
EQc3.2	Electricity	Negligible Fan energy			
F0-4 4	Capital Costs	Quantity Estimation/Costing			
EQc4.4	Non-Energy O&M	Consultant Rationale			
FO oF	Capital Costs	Quantity Estimation/Costing			
EQc5	Non-Energy O&M	Insufficient information to quantify			
F0-6 3	Capital Costs	3 rd Party Literature			
EQc6.2	Non-Energy O&M	Insufficient information to quantify			
EQc8	Capital Costs	Quantity Surveying/Costing			
IDc1.1	Capital Costs	Negligible			
	Capital Costs	Captured under WEc2/WEc3			
IDc1.2 (WEc3)	Non-Energy O&M	Captured under WEc2/WEc3			
	Water Savings	LEED Submittal Data			
IDc2	Capital Costs	Client Information			

Table 4. Credit Evaluation Matrix – South-West Edmonton Police Services

South-West Edmonton Police Services					
Credit	Variable	Methodology/Source (#)			
	Capital Costs	Quantity Estimation/Costing Consultant Rationale			
SSc5	Non-Energy O&M	3 rd Party Literature Consultant Rationale			
		3 rd Party Literature Consultant Rationale			
	Capital Costs	Quantity Estimation/Costing Consultant Rationale			
SSc6	Non-Energy O&M	Captured under SSc5			
	Stormwater Benefits	3 rd Party Literature			
	Capital Costs	Quantity Estimation/Costing			
SSc7.2	Non-Energy O&M	3 rd Party Literature			
5507.2	Electricity & Gas	3 rd Party Literature			
	Lifecycle Benefits	Quantity Estimation/Costing			
	Capital Costs	3 rd Party Literature			
WEc2	Non-Energy O&M	3 rd Party Literature			
	Water Savings	Consultant Rationale			
W/Fe2	Capital Costs	3 rd Party Literature			
WEc3	Non-Energy O&M	3 rd Party Literature			

	Water Savings	Consultant Rationale
	Capital	Quantity Surveying/Costing 3 rd Party Literature
EAc1	Non-Energy O&M	Client information
	Electricity & Gas	Consultant Rationale
	Capital Costs	Client Information
EAc3	Non-Energy O&M	3 rd Party Literature
	Electricity & Gas	3 rd Party Literature
	Capital Costs	Negligible
MRc5	Reduced Truck Miles	LEED Submittal Data Consultant Rationale
	Capital Costs	Negligible
EQc2	Non-Energy O&M	Captured under EAc1
	Electricity & Gas	Negligible w/ Heat Recovery
EQc3.2	Capital Costs	3 rd Party Literature
50-44	Capital Costs	Quantity Estimation/Costing
EQc4.4	Non-Energy O&M	Consultant Rationale
F.O.6	Capital Costs	Quantity Estimation/Costing
EQc5	Non-Energy O&M	Insufficient Information to Quantify
EQc6.1	Capital Costs	Quantity Estimation/Costing
EQc8	Capital Costs	Quantity Estimation/Costing 3 rd Party Literature
	Non-Energy O&M	3 rd Party Literature
	Electricity & Gas	Captured in EAc1
IDc1.1	Capital Costs	Negligible
	Capital Costs	
IDc1.2 (WEc3)	Non-Energy O&M	Achieved via WEc2 & WEc3 Cumulative Impact
	Water Savings	
IDc2	Capital Costs	Client Information

While the above matrices provide a high-level summary on the qualitative approach taken to each credit, the strategies, technologies and design approaches implemented in each case study are unique to the project. Appendix B provides additional information on individual design approaches, strategies and technologies deemed to have an incremental or binary impact on project cost, operations and performance. Detailed calculations resulting from each of these individual impacts are provided in Appendix 'C' of this report.

2.5 Monetized Social Values

All inputs (utility rates, consumption rates, etc) related to the financial impacts of energy consumption (natural gas and electricity), as well as potable water consumption, and other related impacts can be found in Appendix A.

As previously discussed, this study also incorporated the valuation of social and environmental impacts (in addition to financial impacts). In order to develop a triple-bottom line perspective, the economic value from changes in capital costs, energy consumption/production, staff productivity, material transportation distance, carpooling impacts, stormwater management, potable water use, and other non-energy impacts must be taken into account; the background information on these social valuations is included below. A complete breakdown of the social value input information as well as financial inputs can be found in the Structure and Logic diagrams (S&L's) in Appendix D and the input tables of Appendix A.

To note, many sources for the monetized factors HDR uses in this analysis originate from U.S. This may be a reflection of the much broader scale of studies conducted in the U.S., as compared to Canada (and the rest of the world), and the seemingly strong interest of the U.S. Government to conduct cost-benefit analysis for regulatory decision making. HDR has reviewed a significant body of existing peer-reviewed research from around the world for this analysis and believes the inputs are highly applicable to a Canadian study.

Electricity and Natural Gas Changes (Social Value):

In this analysis, greenhouse gases (GHGs) consist of carbon dioxide (CO_2) equivalents (includes methane (CH_4), and nitrous oxide (N_2O)). Criteria Air Contaminants (CACs) consist of mono-nitrogen oxides (NO_x), sulfur dioxide (SO_2), particulate matter (PM), and volatile organic compounds (VOCs). Reductions in these pollutants occur because of a reduction in electricity and natural gas consumption. Offsetting power from the grid has implications to the quantity of GHG and CAC emissions emitted. In other words, by using less power, that electricity grid produces less energy and subsequently produces fewer emissions. In order to assess the change in emissions for each building, one must first know the amount of pollutant emitted for every unit of energy generated by the electricity grid in Alberta.

To convert the generation profile into emissions, we used emission inventories published by Environment Canada and other sources to derive a tonne/megawatt hour (MWh). The overall emission conversion factors are shown below, with changing intensities over time to account for the cleaner grid. The 2014 grid conversion factors are shown below, as are the emissions factors for natural gas, which are less location specific than that of electricity and are based on a tonne/mega joule (MJ)⁵.

⁵ Environment Canada's National Inventory (2011) was used for CAC's produced from electricity. The U.S. Environmental Protection Agency's AP-42 Emission factor report was used to determine CAC's conversion factors for natural gas, while http://www.epa.gov/climateleadership/documents/emission-factors.pdf was used for CO² equivalents.

Table 1. GHG Conversion Factors

Variable Name	Unit	Value			Source	
	Onit	Median	Low	High	Source	
CO2 Equivalents - Electricity	Tonnes/MWh	0.863363	0.647522	1.079203	Environment Canada. National Inventory Report (2011). +/- 25% for High/Low	
CO2 Equivalents - Natural Gas	Tonnes/MJ	0.000052046	0.00003903	0.00006506	Environment Canada. National Inventory Report (2011). +/- 25% for High/Low	

Table 2. CAC Conversion Factors

Variable Name	Unit		Value	Source	
variable Name	Unit	Median	Low High		Source
NOx - Electricity	Tonnes/MWh	0.001355	0.001016	0.001693	Environment
SO2 - Electricity	Tonnes/MWh	0.001802	0.001351	0.002252	Canada. National Inventory Report
PM - Electricity	Tonnes/MWh	0.000049	0.000036	0.000061	(2011). +/- 25% for
VOC - Electricity	Tonnes/MWh	0.000011	0.000008	0.000014	High/Low
NOx - Natural Gas	Tonnes/MJ	0.0000000211	0.000000158	0.000000263	U.S. Environmental
SO2 - Natural Gas	Tonnes/MJ	0.000000003	0.000000002	0.000000003	Protection Agency. AP-42 (Updated
PM - Natural Gas	Tonnes/MJ	0.000000032	0.000000024	0.000000040	2011). +/- 25% for High/Low
VOC - Natural Gas	Tonnes/MJ	0.000000023	0.000000017	0.000000029	5,100

CO₂ Methodology:

As with all inputs used in its studies, HDR uses a probability distribution to represent the potential value for a tonne of CO_2 . In order to define this distribution we require three key data points: an expected median or 50th percentile value, a low value representing the minimum realistic value and a high value representing the highest realistic value. In order to determine which would be the most appropriate data point, a meta-analysis of over 150 recent scientific estimates of the social cost of CO_2 was conducted.

For the upper and lower bounds, we used two well-established yet extreme views of the theoretical impact on the planet of an incremental tonne of CO₂; the median value was generated under the auspices of several US Federal departments to assist agencies in regulatory impact analysis.

These values are based on the calculation of the expected damage caused by climate change including not only impacts on market outputs like food and forestry but also estimates of losses from non-market impacts (where a good is not traded, and where its value is not obvious). The most comprehensive damage studies include such factors as the greater intensity of hurricanes, impacts of changes in temperature and precipitation on food production, ecosystem services, recreation, and the increased burdens of disease. The estimates also include adjustments for the risk of low-probability, highconsequence events such as abrupt climate change. The primary difference between these estimates is in the discount rate used to value future impacts.

This value is then escalated annually using rates derived from the US Federal Interagency Working Group on Social Cost of Carbon. The values, listed in 2014 dollars, are found below.

Greenhouse Gases	Expected Mean Value	Probability Distribution	\$/Metric Ton (2014 \$)	Source
Carbon Dioxide	<u> </u>	Median	\$40.46	Interagency Working Group on Social Cost of Carbon (2013)
CO2e	\$49.26	Low	\$14.79	Nordhaus (2008)
		High	\$118.94	Stern Review (2006)

Table 3. Social Cost of Greenhouse Gases (GHGs)	Table 3	Social	Cost of	Greenhouse	Gases	(GHGs)
---	---------	--------	---------	------------	-------	--------

CAC Methodology:

The basis for monetizing the social impacts of criteria air contaminants is to use the results from three reputable studies by the U.S. Department of Transportation (US DOT), the European Commission, and Yale University. As with many other social impact quantification initiatives, the varying methodologies for each study yielded a wide array of results. Furthermore, some studies included certain compounds such as Ozone or Nitrogen Dioxide while others did not. For the purpose of consistency, only overlapping compounds were analyzed. The results from each study were ranked into a lower, median, and upper range and then analyzed with a Project Evaluation and Review Techniques (PERT) distribution to obtain a mean expected value. The main criteria air contaminants analyzed were Nitrogen Oxide (NOx), Volatile Organic Compounds (VOCs), Particulate Matter (PM), and Sulfur Dioxide (SO2). The expected values of each CAC and the respective sources are listed below.

The compounds are further split and categorized into Rural and Urban, as the impacts from CACs are localized and the more dense the population, the greater the impacts. After a review of the fossil fuel generating stations that are currently operational in Alberta, it was determined that 66.7% of the fossil fuel derived electricity is generated in an urban context. This value was determined by calculating the weighted average of fossil fuel generating station capacity within the province, outside of urban areas with high population densities. All values below are in 2014 CAD dollars per ton, and urban values are listed only.

Table 4. Social Cost of Criteria Air Contaminants (CACs)

Air Pollutants	Expected Mean Value	Probability Distribution	\$/Metric Tonne (2013 \$)	Source
Nitrogen Oxide		Median	\$6,029.62	US DOT /NHSTA (2010)
NO _x	\$7,127	7 Low \$462.72 High \$18,178.76		Muller et al. (2007)
				ECDG/ AEA Technology (2005)
Volatile Organic Compounds		Median	\$1,478.96	US DOT /NHSTA (2010)
VOCs	\$1,645	. ,645 Low \$771.22		Muller et al. (2007)
		High	\$3,181.28	ECDG/AEA Technology (2002)
Particulate Matter - Urban	Median \$286,821		\$329,922.86	US DOT /NHSTA (2010)
PM 2.5		Low	\$5,089.97	Muller et al. (2007)
		High	\$396,145.44	ECDG/AEA Technology (2002)
Sulfur Dioxide - Urban		Median	\$35,267.62	US DOT /NHSTA (2010)
SO ₂	\$36,572	Low	\$2,313.62	Muller et al. (2007)
		High	\$76,047.81	ECDG Environment (2002)

Specific studies:

- Yale University, Muller et al. (2007): Measuring the damages of air pollution in United States
- US DOT NHTSA Final Regulatory Impact Analysis (2010)
- European Commission Directorate-General Environment (2005): Damages per tonne emission of PM2.5, NH3, SO2, NOx and VOCs from each EU25 Member State (excluding Cyprus) and surrounding seas.
- ECDG (2002), Estimates of the marginal external costs of air pollution in Europe: city 1,000,000; EU average.

Potable Water (Social Value):

Marginal Economic Value of Streamflow:

HDR monetized the social value of water quantity using a widely-known report on the marginal economic value of stream flow for valuing water, from the US Forest Service (Brown 2004)⁶. That paper proposes that the aggregate marginal value of stream flow from a national forest (raw water) is equal to the sum of the values in the different in-stream, off-stream, and hydroelectric uses from the point source of water to its journey to sea. Brown values these uses based on benefits transfers from: water

⁶ Brown, Thomas C., US Forest Service, The Marginal Economic Value of Streamflow From National Forests, 12-28-2004

market rights and lease transactions in the US; avoided cost savings to produce peaking power generation via hydroelectric versus thermoelectric; and Frederick et al. (1996) meta-analysis values for in-stream and off-stream use. In this case, the in-stream value is only used, as downstream water is returned at Gold Bar. Brown segments values into 18 water resource regions (WRRs).

To determine the WRR Edmonton would fall under, HDR calculated the *Water Withdrawal to Supply Ratio* of all 50 states as well as Alberta. This ratio was used as a gauge for water scarcity, measuring the volume of water used against the supply of water. Alberta's ratio fell amongst the top 4% of least scarce regions when compared to the 50 States. The least scarce Water Resource Region in the United States, WRR 8 – Lower Mississippi, was thus used for valuation purposes.

A risk adjusted value of \$ \$0.000005/L of water reclaimed is utilized in this analysis. To note, if this study was completed in a region with a scarce water supply, the value would be much more significant. For instance, in the Lower Colorado region (WRR 15) a value of \$0.00004419/L is used, roughly nine times the value assigned to Alberta.

Table 5. Social Value of Water

Value Component	Unit	Static Value (\$2014/Litre)
Economic Value of Potable Water	\$2014/Litre	\$0.000005

Productivity

To determine the productivity benefits associated with indoor environmental quality improvements one widely used approach relates to the productivity changes of building occupants.

The IEQ credits can be segmented into related productivity outcomes, for instance productivity improvements from IEQ 1 and 2 can be associated to reductions in communicable diseases, while IEQ 3.2, 4.4, and 5 (as well as green furniture) can be linked to a reduction in toxins/irritants, and IEQ 6.1, 6.2, 8.1, and 8.2, can be related to enhanced comfort. Each of these IEQ credit groupings can be monetized in a similar fashion; however, with a distinct approach.

Productivity Gain from Reductions in Communicable Diseases:

For example, for illness related impacts, HDR first determined the annual number of employee workdays lost due to illness (based off of Canadian workplace averages⁷). The average annual salary of an employee on a per diem basis was then multiplied by the number of days lost, and the number of fulltime equivalent employees (FTE's) to calculate the annual productivity loss (in dollar terms) due to illness. A factor was then used to calculate the proportion of the productivity loss that would be recovered (due to the amount of employee days recovered) causal to indoor air quality improvement.⁸ This is based off of the number of LEED[™] credits attained in this productivity category.

⁷ http://www.statcan.gc.ca/pub/75-001-x/2012002/tables-tableaux/11650/tbl-4-eng.htm

⁸ SBW Consulting, Inc. Achieving Silver LEED[™]: Preliminary Benefit-Cost Analysis for Two City of Seattle Facilities. April 2003.

Table 6: Productivity Gain from Toxins/Irritants Control

Variable Name	Unit	Ellerslie Fire Station	Fort Edmonton	SW Police Service	Source/Notes
# of FTE's	#	38	20	350	City of Edmonton
Average Salary Per FTE (fully loaded)	%	\$110,366	\$46,993	\$106,926	City of Edmonton
Average Absence Days Due to: Illness	Days		7.7		Statistics Canada, 2011 Workplace Illness Analysis
Number of Respiratory Disease Credits Earned (Only in Scenario B)	#	1	2	2	HDR/City of Edmonton
Absence Days Reduction Factor, per credit	% per credit		5.5%		SBW Consulting, Inc; 50% of value for conservatism

Ellerslie and SW Police Service Station received 50% of the benefit, due to the frequent out-of-office duties performed by employees in those facilities.

Productivity Gain from Toxins/Irritants Control:

For example, for toxins/irritants related impacts, HDR first determined the annual number of employee work-days lost due to allergies or asthma (based off of existing averages in North America⁹). The average annual salary of an employee on a per diem basis was then multiplied by the number of days lost to calculate the annual productivity loss (in dollar terms) due to allergies and asthma. A factor was then used to calculate the proportion of the productivity loss that would be recovered (due to the amount of employee days recovered) causal to indoor air quality improvement.¹⁰ This is based off of the number of LEED[™] credits attained in this productivity category.

Variable Name	Unit	Value			Source/Notes
Variable Name	Onit	Median	High	Low	Source/Notes
% of FTE With Allergies	%	27.90%	33.48%	22.32%	SBW Consulting, Inc. Achieving Silver LEED™: Preliminary Benefit-Cost Analysis for Two City of Seattle Facilities. April 2003.
% of FTE With Asthma	%	5.20%	6.24%	4.16%	Same as above. SBW Consulting, Inc
Average Absence Days Due to: Allergies	Days	3.3	4.0	2.6	SBW Consulting, Inc

Table 7: Productivity Gain from Toxins/Irritants Control

⁹ SBW Consulting: SBW Consulting, Inc. Achieving Silver LEED[™]: Preliminary Benefit-Cost Analysis for Two City of Seattle Facilities. April 2003.

¹⁰ This factor ranges from a low of 0% to a high of 3%. Factor determined from a study of LEED[™] buildings conducted by SBW Consulting: SBW Consulting, Inc. Achieving Silver LEED[™]: Preliminary Benefit-Cost Analysis for Two City of Seattle Facilities. April 2003.

Average Absence Days Due to: Asthma	Days	3.4	4.1	2.7	SBW Consulting, Inc
Reduction in Loss of Productivity Due to IAQ Management, Low Emitting Laminates, or Low Emitting Furniture	% per credit	0.25%	0.5%	0%	HDR/SBW Consulting, Inc

Ellerslie and SW Police Service Station received 50% of the benefit, due to the frequent out-of-office duties performed by employees in those facilities.

Productivity Gain from Thermal Comfort:

The incremental productivity benefit associated with credits IEQ 6.1, 6.2, 8.1, and 8.2 was determined as follows: the number of full-time employees is multiplied by the average employee salary which is then multiplied by a factor to determine the incremental productivity gain from lighting/heating controls (in dollar terms).¹¹

Table 8: Productivity Gain from Thermal Comfort

Veriable News	11		Value		
Variable Name	Unit	Median	High	Low	Source/Notes
Percentage gain in productivity	% per credit	0.25%	0.50%	0.00%	Sustainable Building Task Force, The Costs and Financial Benefits of Green Buildings. 2003.

Edmonton Paramedic HQ received 50% of the benefit, due to the frequent out-of-office duties performed by employees in that facility.

Forest Stewardship Council (FSC) Wood

After an in-depth literature review of the impacts associated with FSC wood, it was found that minimal information exists on the quantifiable impacts/benefits of FSC wood use. As such, it was assumed that the social benefits of FSC practices would be offset by the market premium on FSC wood. That is, the social benefit is assumed to be fully factored into the market price of FSC wood, resulting in a net social benefit of \$0.

Non-energy Cost Reductions

Non-energy cost reductions resulting from best practice commissioning are attributable to improvements in facility safety, equipment operations and lifespan, indoor air quality, thermal comfort, and a reduction in change orders over the course of the project. With all factors considered, a median incremental benefit of \$0.39 per square foot was determined based on a study by Lawrence Berkeley National Laboratory.¹² This \$/sq ft value is multiplied by the area of the building to determine a total *Non-energy Cost* reduction. The values are based off of an analysis for 44 new construction projects in

¹¹ A study conducted by the California Sustainable Building Task Force determined that there is typically a 0.5% difference in productivity between LEED[™] Gold and LEED[™] Silver buildings attributable to these credits. However, HDR only conservatively used a factor of 0.25% for each credit. Source: Task Force, The Costs and Financial Benefits of Green Buildings. 2003.

¹² Lawrence Berkeley National Laboratory, The Cost-Effectiveness oF Commercial-Buildings Commissioning, 2004.

the US, with information compiled on 95 non-energy benefits, which the major benefits attributed to those categories listed above.

For a comprehensive breakdown of the methodology, inputs, sources and assumptions used in the calculation of the financial and social impacts associated with each credit please see Appendix A and C.

Regional Materials - Trucking Impacts:

The reduction in truck miles from obtaining the regional materials credit has additional benefits associated with it from a societal perspective, including reduced emissions from fuel, accidents, traffic congestion, noise pollution, and pavement wear costs. The US Department of Transportation has published extensive research on these costs to society, and as such HDR uses these recommendations frequently in cost-benefit modelling. The emission conversion factors for truck miles travelled are derived from the US Environmental Protection Agency Motor Vehicle Emission Simulator (MOVES) database; 4-axel 40 kip transport truck emissions were used as a proxy for a typical sized truck.

The values used in this study include (values are based on miles and converted to KM in the model):

Metrics		Median	Comment
CO ₂	Tons/Mile	0.00222849	
NOx	Tons/Mile	0.00001023	EPA Motor Vehicle
SO2	Tons/Mile	0.0000002	Emission Simulator
PM	Tons/Mile	0.00000040	(MOVES) Model
VOC	Tons/Mile	0.00000041	

Table 9: Emissions Factors for Truck Vehicle Miles (2014 Only, Varies Annually)

Table 10: Transportation Impact Factors

Category	Metric	Median	Low	High	Comment
Congestion Cost per mile of Travel	2014\$/VMT	\$0.12	\$0.03	\$0.36	Federal Highway
Accident Cost per mile of Travel	2014\$/VMT	\$0.03	\$0.01	\$0.08	Cost Allocation Study, U.S. DOT,
Noise Cost per mile of Travel	2014\$/VMT	\$0.02	\$0.01	\$0.06	Federal Highway Administration,
Highway Pavement Cost per mile of Travel	2014\$/VMT	\$0.15	\$0.07	\$0.22	May 2000.

Alternative Transportation - Carpooling:

The reduction in the number of commuter vehicles resulting from priority parking spaces for carpooling has additional benefits associated with it from a societal perspective, including reduced emissions from fuel combustion, vehicle operating costs, accidents, traffic congestion, noise pollution, and pavement wear costs. The US Department of Transportation has published extensive research on these costs to society, and as such HDR uses these recommendations frequently in cost-benefit modelling. The emission conversion factors for car/light truck miles travelled are derived from the US Environmental Protection Agency Motor Vehicle Emission Simulator (MOVES) database; a combination of car/light truck emissions were used as a proxy for a typical sized commuting vehicle.

The values used in this study include (values are based on miles and converted to KM in the model):

Table 11: Emissions Factors for Car/Light Truck Vehicle Miles (2014 Only, Varies Annually)

Metrics		Median	Comment
CO ₂	Tons/Mile	0.000385208	
NOx	Tons/Mile	0.00000273	EPA Motor Vehicle
SO2	Tons/Mile	0.00000006	Emission Simulator
PM	Tons/Mile	0.00000004	(MOVES) Model
VOC	Tons/Mile	0.00000052	

Table 12: Transportation Impact Factors

Category	Metric	Median	Low	High	Comment
Congestion Cost per mile of Travel	2014\$/VMT	\$0.086	\$0.022	\$0.245	Federal
Accident Cost per mile of Travel	2014\$/VMT	\$0.018	\$0.010	\$0.054	Highway Cost Allocation
Noise Cost per mile of Travel	2014\$/VMT	\$0.002	\$0.000	\$0.004	Study, U.S.
Highway Pavement Cost per mile of Travel	2014\$/VMT	\$0.001	\$0.001	\$0.002	DOT, Federal Highway Administration, May 2000.

Protect/Restore Open Space – Tree Value:

Tree benefits are a category exclusive to sustainable sites related credits, and are monetized under SSc5: Protect/Restore Open space. The 'value' of trees has been studied at length; one widely used resource is a valuation tool called STREETS created by the US Forest Service. This tool monetizes varied impacts related to a tree, such as energy savings, CO₂ reductions, air quality benefits, stormwater runoff reductions, and aesthetics. For this analysis, because the SS 5 credit is included predominantly in the hypothetical cases, a generic tree benefit valuation was utilized. The benefit monetization for project trees relied primarily on the paper 'Municipal Forest Benefits and Costs in Five US Cities' (McPherson et AI). This paper, published in the Journal of Forestry leverages an urban forest management tool, developed by the US Forestry Service titled 'STRATUM'. The STRATUM model is the successor of the aforementioned 'STREETS' model that the City of Edmonton has used in the past, and as such, uses the same inventory data. The generic value of a tree is multiplied by the planting density (number of trees) identified in the hypothetical build cases for this analysis.

Table 13: Tree Valuation

Category	Metric	Median	Low	High	Comment
Proxy Value of a Generic Tree	2014\$/Tree	\$22	\$19	\$25	McPherson, et. Al: Journal of Forestry; Dec 2005

Stormwater Management Benefits – Avoided TSS Reduction Costs:

Reduced stormwater runoff is valued using an avoided public cost approach; a widely used ecosystem valuation methodology. If stormwater runoff is reduced, then the incremental cost of a public stormwater treatment facility (e.g. rain gardens, engineered wetlands, or detention ponds) might be avoided. This can be used as the proxy value for the stormwater management improvements under

credits SS 6.1 & SS 6.2. Total suspended solids (TSS) reduction is generally accepted as the central objective of stormwater management, and as such, the proxy value of the stormwater management credits are related directly to avoided public TSS reduction costs. For this analysis, HDR obtained a '\$/KG of TSS' cost for public rain garden installations recently built by the City of Calgary, and used such values as a proxy for similar projects in Edmonton. Edmonton actively invests in TSS reduction measures across the city, but such detailed calculations were not available at this time.

Where applicable, HDR calculated TSS amounts captured for each facility (described in-depth in Section 2.4). This amount was multiplied by the value of avoided public stormwater management costs described above.

Table 14: Stormwater Management Benefits

Category	Metric	Median	Low	High	Comment
Proxy Value of Avoided TSS Costs	2014\$/KG TSS/Year	\$0.53	\$1.35	\$2.17	McPherson, et. Al: Journal of Forestry; Dec 2005

3.0 RESULTS

A central piece of this analysis was to determine the possible incremental performance differences between the various LEED[™] certification levels, and the standard level of construction for the case study buildings. All monetary values were converted to constant 2014 CAD dollars using the Consumer Price Index (CPI) and relevant discount factors; this conversion ensures meaningful comparison of dollar streams over the project lifecycle. The SROI model is 31 years in length, based on a 30 year analysis of the project's impacts, and a one year period to have the building designed, built and fully operational. In this case, the study period is related to the typical useful life for the majority of the capital expenditures analyzed. For the sake of comparability, the assumption is that each building was constructed in 2014 and is operational at the start of 2015. The model assumes inflation of 2% per annum based on the midpoint of the Bank of Canada's target range of 1 to 3 percent. The real discount rate is 2%, consistent with the City's 4% nominal discount rate used for internal analyses. The electricity and natural gas utility rates were escalated based on forecasts from the National Energy Board of Canada (NEB), these are specific to Alberta, and vary annually. The water utility escalation rates are based off of City of Edmonton growth estimates. The emissions factors for electricity impacts are based off of the Alberta grid, and the factors are adjusted over time to account for the future transition to a cleaner grid. The delivery of this SROI analysis included the facilitation of key City-staff stakeholders to reach consensus on input data values and calculations to be used in the model.

The results tables that are generated from the SROI analysis provide a summary of the study's financial results, shown as the Net Present Value (NPV), Benefit-Cost Ratio (BCR), and Discounted Payback Period (DPP) for each of the alternatives.

- NPV is defined as the present value of total benefits over the life of the investment minus the present value of total costs over the same period. NPV is the principal measure of a capital investment's economic worth. A positive value means that the investment would furnish benefits to the region whose total economic value exceeds the capital costs and operating funds needed to build and run the system.
- The BCR highlights the overall "value for money" of a project, expressed as the ratio of the benefits of a project relative to its costs, with both expressed in present-value monetary terms.
- Finally, the DPP is the period of time required for the return on an investment to recover the sum of the original investment on a discounted cash flow basis.

The following section provides the results from the SROI analysis. Outputs are split into two perspectives: Financial Return on Investment (FROI), and Sustainable Return on Investment (SROI).

- Financial Return on Investment (FROI) includes only the cash impacts to the owner of the building (City of Edmonton) highlighted in blue font
- Sustainable Return on Investment (SROI) adds the external non-cash impacts which affect society to the FROI (items such as greenhouse gases (GHG's) and criteria air contaminants (CAC's)) highlighted in green font, additive to the FROI

Table 1 provides a summary of the present value of the incremental costs and benefits (LEED[™] Silver relative to the Standard Construction, along with the NPV, BCR, DPP of each of the three buildings, as well as an aggregation of all three. Table 2 provides a summary of the LEED[™] Gold relative to LEED[™] Silver analysis.

Table 1. Summary of Results (Mean Risk-Adjusted Values)

Scenario A: LEED Silver vs Standard Construction SROI Analysis - Impacts & Results: 30 Year Study Period	Ellerslie Fire Station	Fort Edmonton Administration	Edmonton Police Service SW Division Station	Aggregate Results		
Social Benefit of Reduced Potable Water Use	\$2	\$2	\$90	\$95		
GHG Social Benefit from Reduced Energy Use (Electricity & Natural Gas)	\$251,887	\$57,939	\$790,415	\$1,100,242		
CAC Social Benefit from Reduced Energy Use (Electricity & Natural Gas)	\$155,584	\$32,239	\$518,087	\$705,909		
8 O&M Cost Savings (Including Energy) at Water/Wastewater Treatment Plants	\$218	\$247	\$9,734	\$10,199		
8 O&M Cost Savings (Including Energy) at Water/Wastewater Treatment Plants 8 Social Benefit of Enhanced Productivity from Indoor Environmental Quality Improvements 8 GHG Social Benefits from Reduced Truck & Car Distance Travelled	\$179,663	\$81,055	\$1,089,901	\$1,350,620		
GHG Social Benefits from Reduced Truck & Car Distance Travelled	\$0	\$1,847	\$0	\$1,847		
	\$0	\$357	\$0	\$357		
CAC Social Benefits from Reduced Truck & Car Distance Travelled Vehicle Operating Cost Savings from Reduced Truck & Car Distance Travelled Reduced Social Cost of Accidents from Reduced Truck & Car Distance Travelled Reduced Social Cost of Pavement Damage from Reduced Truck & Car Distance Travelled Reduced Social Cost of Traffic Noise from Reduced Truck & Car Distance Travelled	\$0	\$34,023	\$0	\$34,023		
문 Reduced Social Cost of Accidents from Reduced Truck & Car Distance Travelled	\$0	\$2,402	\$0	\$2,402		
Reduced Social Cost of Pavement Damage from Reduced Truck & Car Distance Travelled	\$0	\$331	\$0	\$331		
	\$0	\$212	\$0	\$212		
Reduced Social Cost of Traffic Congestion from Reduced Truck & Car Distance Travelled Capital & Soft Costs - Incremental Total For All Credits	\$0	\$10,786	\$0	\$10,786		
Capital & Soft Costs - Incremental Total For All Credits	(\$261,400)	(\$163,390)	(\$617,950)	(\$1,042,740)		
Net O&M Cost Impacts (Non-Energy and Water)	\$135,266	\$67,660	\$489,364	\$692,290		
Potable Water Cost Savings	\$6,496	\$7,916	\$280,939	\$295,351		
Energy Cost Savings (Electricity & Natural Gas)	\$562,693	\$113,979	\$1,963,365	\$2,640,037	Я	SR
Capital Replacement Costs Savings and Residual Value of Investment	\$0	\$52,866	\$65,818	\$118,684	õ	lõ
g FROI Net Present Value	\$443,054	\$79,032	\$2,181,537	\$2,703,622		
FROI Benefit Cost Ratio	2.7		4.5	3.6	Ŗ	
FROI Net Present Value FROI Benefit Cost Ratio FROI Discounted Payback Period SROI Net Present Value	10 y 2 m		6 y 5 m	8 y	RO	
SROI Net Present Value	\$1,030,409	\$300,472	\$4,589,764	\$5,920,645	_	
SROI Benefit Cost Ratio	4.9		8.4	6.7	SR	
SROI Benefit Cost Ratio SROI Discounted Payback Period	6 y 1 m		3 y 11 m	4 y 9 m	ROI	

The results herein include only the incremental costs and benefits identified when comparing specific buildings involving a hypothetical determination of incremental credits in two build situations: in this case comparing the net benefits of LEED Silver vs Standard Construction (over and above ABC 2006).

Summary of Results: Scenario A - LEED[™] Silver vs Standard Construction Building

- The aggregate results comparing LEED[™] Silver versus Standard Construction are positive
 - Each building generates positive financial returns from a cash-only (FROI) perspective:
 - Over the study period, the combination of utility savings from reduced electricity, natural gas, and water use, as well as other operating & maintenance (O&M) costs and avoided replacement costs savings exceeds the addition capital costs (including LEED[™] consultant, registration and certification costs) and any additional O&M costs incurred related to the incremental credits for Ellerslie Fire Station, Fort Edmonton Administration, and Edmonton Police Service SW Division. However, each building shows varying degrees of magnitude of positive outcomes.
 - The aggregate financial results are overwhelmingly positive: pursuing LEED[™] Silver versus standard construction generates 3.6 times more lifecycle benefits than costs, pays for its costs within 8 years, and generates roughly \$2.7M in net financial benefits to the facility owners.
 - Each building generates positive returns from a triple bottom line (economic, social, and environmental) perspective:
 - The aggregate triple bottom line SROI results are overwhelmingly positive: pursuing LEED[™] proves to generate 6.7 times more lifecycle benefits than costs, pays for the costs within 4 years and 9 months, and generates roughly \$5.9M in net benefits.
- Building to LEED[™] Silver versus Standard Construction generates positive externalities to society
 - The net social and environmental impacts monetized in this analysis are positive:
 - The triple bottom line economic, social, and environmental perspective output metrics (SROI) from each building are superior than the cash-only metrics (FROI)
 - In aggregate, the buildings generate roughly \$3.2M in net positive monetized benefits to society resulting from: reduced electricity, natural gas, and potable water consumption; improved thermal comfort and toxins/irritants control; and reduced car and truck distances travelled from carpooling and regionally sourced materials.

Table 2. Summary of Results (Mean Risk-Adjusted Values)

Scenario B: LEED Gold vs LEED Silver SROI Analysis - Projected Impacts & Results: 30 Year Study Period	Ellerslie Fire Station	Fort Edmonton Administration	Edmonton Police Service SW Division Station	Aggregate Results		
Social Benefit of Reduced Potable Water Use	\$2	\$4	\$56	\$62		
GHG Social Benefit from Reduced Energy Use (Electricity & Natural Gas)	\$32,319	\$13,247	\$290,631	\$336,196		
CAC Social Benefit from Reduced Energy Use (Electricity & Natural Gas)	\$19,954	\$7,101	\$190,531	\$217,586		
O&M Cost Savings (Including Energy) at Water/Wastewater Treatment Plants	\$247	\$373	\$6,025	\$6,645		
Stormwater Management Benefits (TSS Reduction)	\$309,971	\$0	\$581,242	\$891,213		
Social Benefit of Enhanced Productivity from Indoor Environmental Quality Improvements	\$141,810	\$73,435	\$752,120	\$967,365		
Urban Park/Tree Benefits	\$37,447	\$46,809	\$96,081	\$180,336		
FSC Wood Benefits (Commensurate with Costs)	\$0	\$1,675	\$0	\$1,675		
GHG Social Benefits from Reduced Truck & Car Distance Travelled	\$0	\$0	\$152	\$152		
CAC Social Benefits from Reduced Truck & Car Distance Travelled	\$0	\$0	\$234	\$234		
Vehicle Operating Cost Savings from Reduced Truck & Car Distance Travelled	\$0	\$0	\$1,387	\$1,387		
Reduced Social Cost of Accidents from Reduced Truck & Car Distance Travelled	\$0	\$0	\$47	\$47		
Reduced Social Cost of Pavement Damage from Reduced Truck & Car Distance Travelled	\$0	\$0	\$218	\$218		
Reduced Social Cost of Traffic Noise from Reduced Truck & Car Distance Travelled	\$0	\$0	\$38	\$38		
Reduced Social Cost of Traffic Congestion from Reduced Truck & Car Distance Travelled	\$0	\$0	\$219	\$219		
Capital & Soft Costs - Incremental Total For All Credits	(\$69,386)	(\$134,520)	(\$469,399)	(\$673,305)		
Net O&M Costs - Incremental Total For All Credits	\$0	\$0	\$0	\$0		
Net O&M Cost Impacts (Non-Energy and Water)	(\$2,128)	\$134,312	(\$8,454)	\$123,730		
Potable Water Cost Savings	\$7,368	\$11,966	\$173,900	\$193,235	끐	¥
Energy Cost Savings (Electricity & Natural Gas)	\$72,124	\$25,358	\$721,311	\$818,793	õ	SROI
FROI Net Present Value	\$7,979	\$37,116	\$417,358	\$462,454		
FROI Benefit Cost Ratio	1.1	1.3	1.9	1.7	규	
FROI Discounted Payback Period	27 y	22 y 10 m	14 y 8 m	16 y 7 m		
SROI Net Present Value	\$549,730	\$179,759	\$2,336,337	\$3,065,826		
SROI Benefit Cost Ratio	8.7	2.3	5.9	5.5	ŝ	
SROI Discounted Payback Period	3 y 9 m	11 y 9 m	5 y 1 m	5 y 5 m	õ	

The results herein include only the incremental costs and benefits identified when comparing specific buildings involving a hypothetical determination of incremental credits in two build situations: in this case comparing the net benefits of LEED Gold vs LEED Silver

Summary of Results: Scenario B - LEED[™] Gold vs LEED[™] Silver

- The aggregate results in building to LEED[™] Gold versus LEED[™] Silver are positive, although specific buildings generate unique results
 - Each building generates positive financial returns from a cash-only (FROI) perspective:
 - Over the study period, the combination of utility savings from reduced electricity, natural gas, and water use, as well as other operating & maintenance (O&M) costs and avoided replacement costs savings exceeds the addition capital costs and any additional O&M costs incurred related to the incremental credits for Ellerslie Fire Station, Fort Edmonton Administration, and Edmonton Police Service SW Division.
 - The aggregate financial results are positive: pursuing LEED[™] Gold versus LEED[™] Silver generates 1.7 times more lifecycle benefits than costs, pays for its costs within 16 years and 7 months, and generates roughly \$462K in net financial benefits to the facility owners.
 - Each of the buildings generate positive returns from a triple bottom line (economic, social, and environmental) perspective:
 - The aggregate triple bottom line SROI results are overwhelmingly positive: pursuing LEED[™] Gold vs LEED[™] Silver proves to generate 5.5 times more lifecycle benefits than costs, pays for the costs in under 5 years and 5 months, and generates roughly \$3M in net benefits.
- Building to LEED[™] Gold versus LEED[™] Silver generates positive externalities to society
 - The net social and environmental impacts monetized in this analysis are positive:
 - The triple bottom line economic, social, and environmental perspective output metrics (SROI) from each building are superior than the cash-only metrics (FROI)
 - In aggregate, the buildings generate roughly \$2.6M in net positive monetized benefits to society resulting from: reduced electricity, natural gas, and potable water consumption; improved thermal comfort, toxins/irritants control, and reduced communicable diseases; FSC Certified wood; stormwater runoff management; urban parks/trees; and reduced car and truck distances travelled from carpooling and regionally sourced materials.

ASSUMPTIONS, RISK FACTORS AND CONSIDERATIONS:

- This analysis used a unique combination of site-specific costs, utility rates, electricity grid composition, water availability, employee counts, wages, and other assumptions that will prevent these results from being transferable to other jurisdictions.
- The three facilities used in this analysis should not necessarily be construed as indicative of every individual LEED[™] building in the City of Edmonton, as individual idiosyncrasies exist from one building to the next that will impact the results greatly.
- The Canada Green Building Council (CaGBC) guidelines are ever changing and may affect future project outcomes and results. Thus the definition of credits and how they are achieved may change over time.
- The task of identifying the specific LEED[™] credits obtained for each building that could be deemed as being incrementally different if the facilities obtained or targeted LEED[™] Silver or Gold certification, or were built to the Standard level of Construction, was led by HDR's Architects. The outcome of this task identified which credits were eligible for inclusion within the cost-benefit analysis conducted by HDR's Economists. While rigorous in its approach, this determination represents a hypothetical situation whereby best estimates we used and actual outcomes may have differed from reality. To the extent that these assumptions do not reflect what actually would have been done in reality, certain costs/benefits may be over or under represented. To mitigate this effect, HDR conducted risk analysis on all input variables.
- The CaGBC is a national organization that administers the LEED[™] Canada program. In addition to the review and oversight of the rating system, they are also a hub of knowledge and centre for the advocacy for sustainable design and construction. The intent of LEED[™] is to act as a transformative force in the industry and as such the rating system is regularly updated. Contrary to some popular perceptions, LEED[™] is not a sustainable building *code*. While there are some prescriptive requirements relating to minimum best practices, LEED[™] is a rating system in which objectives are established and the individual approaches, strategies and technologies selected by project teams are unique to each individual project. The process of LEED[™] itself, in encouraging (often requiring) various disciplines to meet and develop designs that will meet the objectives at the very early stages of concept design in an integrated manner has been observed as correlative to greater design innovation, and ultimately higher performing buildings. That being said, one can also say this is an outcome of other sustainable rating systems as well.
- The SROI model attributes different values to criteria air contaminants depending on the location of the emissions as effects are typically quite localized and higher density areas (e.g. urban) would carry much more serious implications than lower density areas (e.g. rural). HDR considered the location of all major providers to the power grid and valued CAC emissions accordingly.
- In consideration of Alberta's initiatives to reduce emissions through carbon capture and storage as well as gradually retiring coal plants and targeting renewable sources of energy, the intensity factors of the power grid were gradually reduced throughout the study. Correspondingly, HDR applied this gradual shift in energy sources to the urban and rural split affecting the CAC emissions. The result was a shift towards a cleaner power grid, but a higher relative dependence on natural gas facilities in urban environments.
- Edmonton is not a water scarce region, and as such, the social benefit applied to reduce potable water use is relatively low, as dictated by the literature used in its valuation.
- Within the impact categories listed above, seven are attributed to changes in truck transportation distances (credit MRc2) or reduced auto distances travelled due to carpooling (credit SS 4.4), where

applicable: GHG & CAC Social Benefits from Reduced Truck/Car Distances Travelled, Vehicle Operating Cost Savings, as well as Reduced Social Cost of Accidents, Pavement Damage, Traffic Noise, and Congestion.

- Any potential delays relating to a LEED[™] certification designation on a specific facility is not included in the analysis.
- While public perception, increased real-estate values, and tenant attraction/retention could all be considered net benefits of LEED[™] certification, it is believed that attempting to monetize these benefits would overlap with benefits already monetized elsewhere in the analysis. For example, real-estate value may increase because the operating costs are lower and the lower operating costs are already captured within the cost benefit analysis and should not be double-counted.
- Some benefits to sustainable design and construction, while certainly valid, are difficult to monetize in a credible manner. The literature does not exist in some instances to support benefits that are widely accepted as having positive impacts on health and enjoyment but not easily quantifiable; for example, the health impacts of low VOC products on transient or casual users of facilities. "Productivity", in the context of the research used for the valuation methodology for the Indoor Environmental Quality credits, is related only to efficiency gains to workers (less sick days and/or increased output). As no salary is attributable to transient/casual users, "productivity" benefits can not be monetized in the same way as full time employees. Sufficient literature does not currently exist to credibly support an argument that the marginal health and wellness benefits would have direct impacts on productivity outside of the building.
- It must be acknowledged that LEED[™] buildings impart both additional costs and cost reductions to both operations and maintenance operations. While HDR has quantified these impacts wherever possible, the majority of literature that currently exists is aimed more toward capital costs and utility savings rather than non-utility operations (maintenance) costs. Several potential areas of impacts were identified but could not be quantified. The specific credits in which operational impacts are anticipated, but not quantified are described in greater detail in Appendix A of this report.

While the SROI analysis identifies the economic outcomes of building to higher levels of sustainability within the LEED^M NC 1.0 framework, the tables below identify the proportion that upfront costs related to different levels of LEED^M make up of the total construction value of each building. The first two tables below identify the actual incremental upfront costs associated with the two LEED^M levels versus standard building construction for each building as a proportion of the actual total build costs. In these two cases, the upfront costs include LEED^M consultant premiums, LEED^M registration & certification costs, and total capital cost premiums (related to the capital costs associated with the LEED^M Gold vs LEED^M Silver perspective is taken – in this case, the numbers are framed as being only incremental to Gold at the Silver level. Here, we include in the upfront costs only the total capital cost premiums and any LEED^M consultant premiums; however, no LEED^M registration & certification costs are included as these would be paid in both levels of certification and therefore impose no additional incremental costs.

Table 3. Scenario A: LEED[™] Silver vs Standard Construction Upfront Cost Premiums

	LEED Professional Premiums*	LEED Registration & Certification Costs	Total Capital Cost Premiums	Total LEED Premium	Total Construction Value**	Total LEED Silver Costs as a % of Total Construction Value
	\$88,500	\$7,500	\$165,400	\$261,400	\$8,405,214	3.1%
Ellerslie Fire Station	(1.05%)	(0.09%)	(1.97%)	(3.1%)		
Fort Edmonton	\$22,500	\$4,200	\$136,690	\$163,390	\$2,600,000	6.3%
Administration	(0.87%)	(0.16%)	(5.26%)	(6.3%)		
Edmonton Police Service	\$172,800	\$7,200	\$437,950	\$617,950	\$21,500,000	2.9%
SW Division Station	(0.80%)	(0.03%)	(2.04%)	(2.9%)		

Total Upfront LEED Silver vs Standard Construction Cost Premiums

* In Scenario B: Gold versus Silver, it is expected that additional LEED[™] consulting fees would apply due to the increased amount of documentation and design work on behalf of the consultant teams. City of Edmonton staff provided an incremental value per additional credit, based upon recent pricing received within the Edmonton market, for a City of Edmonton project. This pricing regime is considered to be reflective of local market conditions, building typology and client expectations. The incremental value per credit is multiplied by the number of additional credits needed to achieve hypothetical Gold to determine an incremental premium for additional consulting fees. As such, the Silver scenario for Ellerslie has also been adjusted to remove the additional premium if it had been designed to Silver standards.

** Adjusted for LEED[™] Rating: Ellerslie was designed for LEED[™] Gold; as such the total costs have been adjusted by the capital cost premium to reflect the hypothetical build at a LEED[™] Silver rating; the inverse holds true for Fort Edmonton and Police Service SW Division Station.

Table 4. Scenario B: LEED[™] Gold vs Standard Construction Upfront Cost Premiums

Total Upfront LEED Gold vs Standard Construction Cost Premiums

	LEED Professional Premiums*	LEED Registration & Certification Costs	Total Capital Cost Premiums	Total LEED Premium	Total Construction Value**	Total LEED Gold Costs as a % of Total Construction Value
	\$96,500	\$7,500	\$234,786	\$338,786	\$8,640,000	3.9%
Ellerslie Fire Station	(1.12%)	(0.09%)	(2.72%)	(3.9%)		
Fort Edmonton	\$30,500	\$4,200	\$263,210	\$297,910	\$2,863,210	10.4%
Administration	(1.07%)	(0.15%)	(9.19%)	(10.4%)		
Edmonton Police Service	\$181,800	\$7,200	\$898,349	\$1,087,349	\$22,398,349	4.9%
SW Division Station	(0.81%)	(0.03%)	(4.01%)	(4.9%)		

Table 5. Scenario B: LEED[™] Gold vs LEED[™] Silver Upfront Cost Premiums

Total Upfront LEED Gold vs LEED Silver Construction Cost Premiums

	LEED Professional Premiums*	LEED Registration & Certification Costs	Total Capital Cost Premiums	Total LEED Premium	Total Construction Value**	Total LEED Gold vs Silver Costs as a % of Total Construction Value
Ellerslie Fire Station	\$8,000 (0.09%)	\$0	\$69,386 (0.80%)	\$77,386 (0.9%)	\$8,640,000	0.9%
Fort Edmonton	, ,	\$0	. ,	, ,	62,962,210	4.7%
Administration	\$8,000 (0.28%)	ŞU	\$126,520 (4.42%)	\$134,520 (4.7%)	\$2,863,210	4.7%
Edmonton Police Service	\$9,000	\$0	\$460,399	\$469,399	\$22,398,349	2.1%
SW Division Station	(0.04%)		(2.06%)	(2.1%)		

The graphs below provide a snapshot of the relative values the specific cost and benefit categories which make up the NPV for the aggregated scenarios over the study period.

Figure 1. Discounted Cost & Benefits for the Aggregate Scenario A

Figure 2. Discounted Cost & Benefits for the Aggregate Scenario B

3.1 Risk Analysis Results

The figures below provide risk-adjusted information (in the form of Sustainability S-curves) with regards to the Net Present Value (NPV) from both the FROI and SROI perspectives for the analysis. The S-Curves identify the probability distributions from each perspective in a cumulative manner and are synthesized into an intuitive risk analysis model. The results are stacked from worst to best, and the 50th percentile is the most likely value. The curves are generated using a 10,000 iteration probabilistic simulation as produced by the risk-analysis software add-on to Excel called @Risk. The difference between the two curves is the monetized social & environmental values; the purpose of the S-Curves is to show the range of possibilities, expected outcomes, and their probability of occurrence.

SCENARIO A: Aggregate Results

<u>FROI</u>

• The FROI NPV S-Curve shows a most-likely NPV of \$2.7M (median); we can say that with 80% confidence, the NPV will fall between \$2.51M and \$2.90M.

<u>SROI</u>

• The SROI NPV S-Curve shows a most-likely NPV of \$5.92M (median); we can say that with 80% confidence, the NPV will fall between \$5.69M and \$6.15M. The SROI S-Curve is to the right of the FROI S-Curve, and shows additional social & environmental benefits of approximately \$3.22M.

Figure 1. NPV S-Curve (Aggregate)

In aggregate, there is a zero percent probability of the three buildings together (relative to standard construction) yielding a negative NPV with respect to both FROI and SROI. However, the aggregate results presented are not necessarily representative of every individual building in Edmonton. That is, individual project variations do exist. Results specific to each building are presented below.

SCENARIO A: Ellerslie Fire Station

FROI

• The FROI NPV S-Curve shows a most-likely NPV of \$0.44M (median); we can say that with 80% confidence, the NPV will fall between \$0.37M and \$0.51M.

<u>SROI</u>

• The SROI NPV S-Curve shows a most-likely NPV of \$1.03M (median); we can say that with 80% confidence, the NPV will fall between \$0.95M and \$1.11M. The SROI S-Curve is to the right of the FROI S-Curve, and shows additional social & environmental benefits of approximately \$0.59M.

Figure 2. NPV S-Curve

Therefore with Ellerslie, there is a 0% chance of a negative FROI or SROI NPV.

SCENARIO A: Fort Edmonton Administration

FROI

- The FROI NPV S-Curve shows a most-likely NPV of \$80K (median); we can say that with 80% confidence, the NPV will fall between \$40K and \$120K.
- <u>SROI</u>
 - The SROI NPV S-Curve shows a most-likely NPV of \$300K (median); we can say that with 80% confidence, the NPV will fall between \$260K and \$340K. The SROI S-Curve is to the right of the FROI S-Curve, and shows additional social & environmental benefits of approximately \$220K.

Figure 3. NPV S-Curve

There is roughly a 2% percent probability of Fort Edmonton Administration yielding a slightly negative NPV with respect to FROI, but no chance with respect to SROI.

SCENARIO A: Edmonton Police Service SW Division Station

<u>FROI</u>

- The FROI NPV S-Curve shows a most-likely NPV of \$2.18M (median); we can say that with 80% confidence, the NPV will fall between \$2M and \$2.36M.
- <u>SROI</u>
 - The SROI NPV S-Curve shows a most-likely NPV of \$4.59M (median); we can say that with 80% confidence, the NPV will fall between \$4.37M and \$4.81M. The SROI S-Curve is to the right of the FROI S-Curve, and shows additional social & environmental benefits of approximately \$2.41M.

Figure 4. NPV S-Curve

There is a zero percent probability of SW Police Service Division Station yielding a negative NPV with respect to both FROI and SROI.

SCENARIO B: Aggregate

<u>FROI</u>

• The FROI NPV S-Curve shows a most-likely NPV of \$0.46M (median); we can say that with 80% confidence, the NPV will fall between \$0.33M and \$0.59M.

<u>SROI</u>

• The SROI NPV S-Curve shows a most-likely NPV of \$3.07M (median); we can say that with 80% confidence, the NPV will fall between \$2.92M and \$3.21M. The SROI S-Curve is to the right of the FROI S-Curve, and shows additional social & environmental benefits of approximately \$2.61M.

Figure 5. NPV S-Curve

There is a zero percent probability of the aggregate Gold vs Silver scenario yielding a negative NPV with respect to both FROI and SROI.

SCENARIO B: Ellerslie Fire Station

<u>FROI</u>

• The FROI NPV S-Curve shows a most-likely NPV of \$-10K (median); we can say that with 80% confidence, the NPV will fall between \$-10K and \$30K.

<u>SROI</u>

• The SROI NPV S-Curve shows a most-likely NPV of \$550K (median); we can say that with 80% confidence, the NPV will fall between \$520K and \$580K. The SROI S-Curve is to the right of the FROI S-Curve, and shows additional social & environmental benefits of approximately \$540K.

Figure 6. NPV S-Curve

There is roughly a 20% percent probability of Ellerslie yielding a negative NPV with respect to FROI and zero chance with respect to SROI.

SCENARIO B: Fort Edmonton Administration

FROI

- The FROI NPV S-Curve shows a most-likely NPV of \$40K (median); we can say that with 80% confidence, the NPV will fall between \$3K and \$70K.
- <u>SROI</u>
 - The SROI NPV S-Curve shows a most-likely NPV of \$180K (median); we can say that with 80% confidence, the NPV will fall between \$140K and \$210K. The SROI S-Curve is to the right of the FROI S-Curve, and shows additional social & environmental benefits of approximately \$150K.

Figure 7. NPV S-Curve

There is roughly a 7% percent probability of Fort Edmonton Administration yielding a negative NPV with respect to FROI and zero chance with respect to SROI.

SCENARIO B: Edmonton Police Service SW Division Station

FROI

- The FROI NPV S-Curve shows a most-likely NPV of \$0.42M (median); we can say that with 80% confidence, the NPV will fall between \$0.29M and \$0.54M.
- <u>SROI</u>
 - The SROI NPV S-Curve shows a most-likely NPV of \$2.34M (median); we can say that with 80% confidence, the NPV will fall between \$2.19M and \$2.48M. The SROI S-Curve is to the right of the FROI S-Curve, and shows additional social & environmental benefits of approximately \$1.92M.

Figure 8. NPV S-Curve

There is a zero percent probability of SW Police Service Division yielding a negative NPV with respect to both FROI and SROI.

APPENDIX A: INPUTS AND ASSUMPTIONS

Table 1. General Model Parameters

Variable Name	Parameter
Base Date	2014
Study Period	31 Years
Location	Edmonton, AB

Table 2. General Inputs

Veriekle Nerre	11	Value	Course (Netos
Variable Name	Unit	Median	Source/Notes
Discount Rate (Real)	%	2%	HDR
Ellerslie Fire Station - Average Salary - Fully Loaded	2014 \$	\$53 <i>,</i> 692	HDR Calculated from City of Edmonton
Fort Edmonton Administration - Average Salary - Fully Loaded	2014 \$	\$87,435	HDR Calculated from City of Edmonton
Edmonton Police Service SW Division Station - Average Salary - Fully Loaded	2014 \$	\$70,096	HDR Calculated from City of Edmonton
Ellerslie Fire Station	# Employees	38.0	HDR Calculated from City of Edmonton
Fort Edmonton Administration	# Employees	20.0	HDR Calculated from City of Edmonton
Edmonton Police Service SW Division Station	# Employees	350.0	HDR Calculated from City of Edmonton
Ellerslie Fire Station	ft2	17,900	City of Edmonton
Fort Edmonton Administration	ft2	7000	City of Edmonton
Edmonton Police Service SW Division Station	ft2	60,000	City of Edmonton
m2 conversion to ft2	M2 to ft2	10.76391	Standard Conversion Rate
MJ conversion to MMBtu	MJ to MMBtu	0.00094701	Standard Conversion Rate

Table 3. Utilities

Variable Name	Unit		Unit	Value		Source/Notes
Variable Name	Onit	Median	Low	High	Source/Notes	
Natural Gas Utility Rate (2014): Ellerslie Fire Station	\$2014/ MJ	\$0.006	\$0.003	\$0.012	City of Edmonton.	
Natural Gas Utility Rate (2014): Fort Edmonton Administration	\$2014/ MJ	\$0.005	\$0.003	\$0.010	High/Low +/- 50% and	
Natural Gas Utility Rate (2014): Edmonton Police Service SW Division Station	\$2014/ MJ	\$0.006	\$0.003	\$0.012	escalating annually based on EIA price forecasts.	

Electricity Utility Rate (2014): Ellerslie Fire Station	\$2014/ kWh	\$0.12	\$0.06	\$0.17	City of Edmonton.
Electricity Utility Rate (2014): Fort Edmonton Administration	\$2014/ kWh	\$0.11	\$0.06	\$0.17	High/Low +/- 50% and escalating
Electricity Utility Rate (2014): Edmonton Police Service SW Division Station	\$2014/ kWh	\$0.13	\$0.06	\$0.19	escalating annually based on EIA price forecasts.
Potable Water Rate (2014): Ellerslie Fire Station	\$2014/ L	\$0.0017	\$0.0009	\$0.0026	City of Edmonton.
Potable Water Rate (2014): Fort Edmonton Administration	\$2014/ L	\$0.0018	\$0.0009	\$0.0027	High/Low +/- 50% and
Potable Water Rate (2014): Edmonton Police Service SW Division Station	\$2014/ L	\$0.0017	\$0.0009	\$0.0026	escalating annually based on EPCOR forecasts and inflation

Table 4. Ellerslie Fire Station Inputs

Ellerslie Fire Station: Scenario A - LEED Silver vs Standard Construction					
Benefits					
Parameter	Metrics	Year	2014	2015-2044	
	Ċ.	Median	\$0	\$0	
Storm Water Management Benefits (TSS): SS 6.1 & SS 6.2	\$/ Year	Low	\$0	\$0	
	i cui	High	\$0	\$0	
		Median	-	18,458.00	
Decreased Potable Water Consumption: WE 3.2	Litres / Year	Low	-	13,843.50	
		High	-	23,072.50	
		Median	-	168,210.00	
Decreased Electricity Consumption: All Credits Within EA 1	KWh/ Year	Low	-	126,157.50	
		High	-	210,262.50	
		Median	-	919,298.24	
Decreased Natural Gas Consumption: All Credits Within EA 1	MJ/ Year	Low	-	689,473.68	
		High	-	1,149,122.80	
	\$/	Median	\$0	\$6,040	
Incremental Non-Energy O&M Decrease: All Credits	ې ۲ Year	Low	\$0	\$4,530	
	i cui	High	\$0	\$7,550	
IEQ Productivity Benefit: Toxins & Irritants Control	\$/	Median	\$0	\$138	

	Year	Low	\$0	\$0
		High	\$0	\$398
IEQ Productivity Benefit: Comfort Control		Median	\$0	\$7,864
	\$/Year	Low	\$0	\$0
		High	\$0	\$15,727
		Median	\$0	\$0
IEQ Productivity Benefit: Reduction in Communicable Respiratory Diseases	\$/Year	Low	\$0	\$0
Respiratory Diseases		High	\$0	\$0
		Median	\$0	\$0
Urban Park/Tree Benefits: Protect/Restore Open Space: SS 5	\$/ Year	Low	\$0	\$0
	Tear	High	\$0	\$0
		Median	0.0	0
Reduced Single Occupancy Vehicle - SS 4.4	Km / Year	Low	0.0	0
	rear	High	0.0	0
		Median	0.0	0
Reduced Truck Hauling Distance - MR5	Km / Year	Low	0.0	0
	rear	High	0.0	0
		Median	\$0	\$0
FSC Wood Benefits - MR 7 - (Commensurate with Costs)	\$/Year	Low	\$0	\$0
		High	\$0	\$0
		Median	\$0	\$0
Avoided Future Replacement Costs - Base Case Roof	\$/Year	Low	\$0	\$0
		High	\$0	\$0
		Median	\$0	\$0
Residual Value of Base Case Roof Replacement Costs	\$/Year	Low	\$0	\$0
		High	\$0	\$0
		Median	\$0	\$0
Residual Value - Metal Roof (50 yr useful life)	\$/Year	Low	\$0	\$0
		High	\$0	\$0
Costs				
Parameter	Metrics	Year	2014	2015-2044
Incremental Upfront Capital & Soft Costs Total - sum of all		Median	\$261,400	\$0
incremental capital & soft costs from each credit for each	\$	Low	\$132,950	\$0
building		High	\$489,850	\$0
		Median	\$0	\$0
Annual Incremental O&M Cost Total	\$/year	Low	\$0	\$0
		High	\$0	\$0

Table 5. Fort Edmonton Administration

Fort Edmonton Administration: Scenario A - LEED Silver vs Standard Construction				
Benefits				
Parameter	Metrics	Year	2014	2015-2044
		Median	\$0	\$0
Storm Water Management Benefits (TSS): SS 6.1 & SS 6.2	\$/ Year	Low	\$0	\$0
	rear	High	\$0	\$0
		Median	-	21,066.00
Decreased Potable Water Consumption: WE 3.2	Litres / Year	Low	-	15,799.50
		High	-	26,332.50
		Median	-	31,149.00
Decreased Electricity Consumption: All Credits Within EA 1	KWh/ Year	Low	-	23,361.75
		High	-	38,936.25
		Median	-	311,287.00
Decreased Natural Gas Consumption: All Credits Within EA 1	MJ/ Year	Low	-	233,465.25
		High	-	389,108.75
	\$/	Median	\$0	\$3,021
Incremental Non-Energy O&M Decrease: All Credits	۶/ Year	Low	\$0	\$2,266
		High	\$0	\$3,776
	\$/	Median	\$0	\$83
IEQ Productivity Benefit: Toxins & Irritants Control	Year	Low	\$0	\$0
		High	\$0	\$238
		Median	\$0	\$3,524
IEQ Productivity Benefit: Comfort Control	\$/Year	Low	\$0	\$0
		High	\$0	\$7,049
IEQ Productivity Benefit: Reduction in Communicable		Median	\$0	\$0
Respiratory Diseases	\$/Year	Low	\$0	\$0
		High	\$0	\$0
	\$/	Median	\$0	\$0
Urban Park/Tree Benefits: Protect/Restore Open Space: SS 5	Year	Low	\$0	\$0
		High	\$0	\$0
	Km /	Median	0.0	7,470
Reduced Single Occupancy Vehicle - SS 4.4	Year	Low	0.0	5,603
		High	0.0	9,338
Reduced Truck Hauling Distance - MR5	Km /	Median	0.0	2,075
	Year	Low	0.0	1,556

SROI SUSTAINABLE FOR

		High	0.0	2,593
		Median	\$0	\$0
FSC Wood Benefits - MR 7 - (Commensurate with Costs)	\$/Year	Low	\$0	\$0
		High	\$0	\$0
		Median	\$0	\$0
Avoided Future Replacement Costs - Base Case Roof	\$/Year	Low	\$0	\$0
		High	\$0	\$0
		Median	\$0	\$0
Residual Value of Base Case Roof Replacement Costs	\$/Year	Low	\$0	\$0
		High	\$0	\$0
		Median	\$0	\$95,760
Residual Value - Metal Roof (50 yr useful life): in year 2044	\$/Year	Low	\$0	\$47,880
		High	\$0	\$143,640
Costs				
Parameter	Metrics	Year	2014	2015-2044
Incremental Upfront Capital & Soft Costs Total - sum of all		Median	\$163,390	\$0
incremental capital & soft costs from each credit for each	\$	Low	\$82,955	\$0
building		High	\$243,825	\$0
		Median	\$0	\$0
Annual Incremental O&M Cost Total	\$/year	Low	\$0	\$0
		High	\$0	\$0

Table 6. Edmonton Police Service SW Division Station

Edmonton Police Service SW Division Station: Scenar	io A - LEE	D Silver v	Standard C	onstruction
Benefits				
Parameter	Metrics	Year	2014	2015-2044
		Median	\$0	\$0
Storm Water Management Benefits (TSS): SS 6.1 & SS 6.2	\$/ Year	Low	\$0	\$0
	rear	High	\$0	\$0
Decreased Potable Water Consumption: WE 3.2		Median	-	804,891.00
	Litres / Year	Low	-	603,668.25
		High	-	1,006,113.75
Decreased Electricity Consumption: All Credits Within EA 1		Median	-	590,526.00
	KWh/ Year	Low	-	442,894.50
		High	-	738,157.50
Decreased Natural Gas Consumption: All Credits Within EA 1	MJ/	Median		

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Incremental Non-Energy O&M Decrease: All CreditsMedian $$0$ $$21,85$ Incremental Non-Energy O&M Decrease: All Credits $$/ Year$ Iequal Non-Energy O&M Decrease: All CreditsMedian $$0$ $$21,85$ IEQ Productivity Benefit: Toxins & Irritants Control $$/ Year$ Median $$0$ $$16,38$ IEQ Productivity Benefit: Toxins & Irritants Control $$/ Year$ Median $$0$ $$1,643$ IEQ Productivity Benefit: Comfort Control $$/ Year$ Median $$0$ $$4,732$ IEQ Productivity Benefit: Reduction in Communicable Respiratory Diseases $$/ Year$ Median $$0$ $$0$ IEQ Productivity Benefit: Reduction in Communicable Respiratory Diseases $$/ Year$ Median $$0$ $$0$ IEQ Productivity Benefit: Reduction in Communicable Respiratory Diseases $$/ Year$ Median $$0$ $$0$ IEQ Productivity Benefit: Reduction in Communicable Respiratory Diseases $$/ Year$ Median $$0$ $$0$ Median $$0$ $$0$ $$0$ $$0$ $$0$ $$0$ Median $$0$ $$0$ $$0$ $$0$ $$0$ Median $$0$ $$0$ $$0$ $$0$ Median $$0$ $$0$ $$0$ Median $$0$
Incremental Non-Energy O&M Decrease: All CreditsMedian\$0\$21,85Incremental Non-Energy O&M Decrease: All Credits $\frac{$/}{Year}$ $\frac{$0}{Year}$ \$0\$16,38High\$0\$27,31 $\frac{$}{Year}$ $$$
$\frac{ cremental Non-Energy Oxiv Decrease: All Credits Year Year \frac{ cow }{ ligh } \frac{ so }{ so } \frac{ so }{ so } \frac{ so }{ so } \frac{ so }{ so } \frac{ so }{ so } \frac{ so }{ so $
$\frac{1}{1} \frac{1}{1} \frac{1}$
$ \begin{array}{c} EQ \ Productivity \ Benefit: \ Toxins \ \& \ Irritants \ Control \\ EQ \ Productivity \ Benefit: \ Comfort \ Control \\ EQ \ Productivity \ Benefit: \ Comfort \ Control \\ EQ \ Productivity \ Benefit: \ Comfort \ Control \\ EQ \ Productivity \ Benefit: \ Comfort \ Control \\ EQ \ Productivity \ Benefit: \ Reduction \ In \ Communicable \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Reduction \ In \ Communicable \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Reduction \ In \ Communicable \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Reduction \ In \ Communicable \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Reduction \ In \ Communicable \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Reduction \ In \ Communicable \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Reduction \ In \ Communicable \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Reduction \ In \ Communicable \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Reduction \ In \ Communicable \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Reduction \ In \ Communicable \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Reduction \ In \ Communicable \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Reduction \ In \ Communicable \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Reduction \ In \ Communicable \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Respiratory \ Diseases \\ EQ \ Productivity \ Benefit: \ Respiratory \ Diseases \ Respiratory \ Respiratory \ Diseases \ Respiratory \ Respiratory \ Respiratory \ Respiratory \ Respiratory \ Respir$
$\frac{100}{100} \frac{100}{100} \frac{100}{100}{100} \frac{100}{100} \frac{100}{100}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$IEQ Productivity Benefit: Comfort Control IEQ Productivity Benefit: Comfort Control \frac{1}{1} \frac{1}{$
High\$0\$93,56IEQ Productivity Benefit: Reduction in Communicable Respiratory DiseasesMedian\$0\$0\$/YearLow\$0\$0High\$0\$0\$/Median\$0\$0\$/\$/\$0\$0
IEQ Productivity Benefit: Reduction in Communicable Median \$0 \$0 k \$/Year Low \$0 \$0 High \$0 \$0 \$/Year Median \$0 \$0
IEQ Productivity Benefit: Reduction in Communicable Median \$0 \$0 k \$/Year Low \$0 \$0 High \$0 \$0 \$0 \$ \$ Median \$0 \$0
Respiratory Diseases S/Year Low S0 S0 High \$0 \$0 \$/Year High \$0 \$0 High \$0 \$0
High \$0 \$0 \$/ Median \$0 \$0
Urban Bark/Trad Bonefits: Protect/Besters Onen Space: SS 5 \$/
orbail raily free benefits. Frotect/Restore Open space, 55.5
Year High \$0 \$0
Median 0.0 0
Reduced Single Occupancy Vehicle - SS 4.4 Km / Low 0.0 0
Year High 0.0 0
Median 0.0 0
Reduced Truck Hauling Distance - MR5 Km / Year Low 0.0 0
High 0.0 0
Median \$0 \$0
FSC Wood Benefits - MR 7 - (Commensurate with Costs) \$/Year Low \$0 \$0
High \$0 \$0
Median \$0 \$135,10
Avoided Future Replacement Costs - Base Case Roof: in year\$/YearLow\$0\$67,552034
High \$0 \$202,65
Median \$0 \$27,02
Residual Value of Base Case Roof Replacement Costs: in year\$/YearLow\$0\$13,512044
High \$0 \$40,53
Median \$0 \$0
Residual Value - Metal Roof (50 yr useful life)\$/YearLow\$0\$0
High \$0 \$0
Costs
Parameter Metrics Year 2014 2015-20
Incremental Upfront Capital & Soft Costs Total - sum of all Median \$617,950 \$0
incremental capital & soft costs from each credit for each \$ Low \$308,975 \$0
building High \$926,925 \$0

		Median	\$0	\$0
Annual Incremental O&M Cost Total	\$/year	Low	\$0	\$0
		High	\$0	\$0

Table 7. Ellerslie Fire Station

Ellerslie Fire Station: Scenario B -	LEED Gold	vs LEED Si	lver	
Benefits				
Parameter	Metrics	Year	2014	2015-2044
		Median	\$0	\$13,840
Storm Water Management Benefits (TSS): SS 6.1 & SS 6.2	\$/ Year	Low	\$0	\$5,468
	rear	High	\$0	\$22,213
		Median	-	20,937.00
Decreased Potable Water Consumption: WE 3.2	Litres / Year	Low	-	15,702.75
		High	-	26,171.25
		Median	-	21,544.00
Decreased Electricity Consumption: All Credits Within EA 1	KWh/ Year	Low	-	16,158.00
		High	-	26,930.00
		Median	-	118,168.00
Decreased Natural Gas Consumption: All Credits Within EA 1	MJ/ Year	Low	-	88,626.00
		High	-	147,710.00
	\$/	Median	\$0	\$0
Incremental Non-Energy O&M Decrease: All Credits	ې د Year	Low	\$0	\$0
		High	\$0	\$0
	\$/	Median	\$0	\$138
IEQ Productivity Benefit: Toxins & Irritants Control	Year	Low	\$0	\$0
		High	\$0	\$398
		Median	\$0	\$2,621
IEQ Productivity Benefit: Comfort Control	\$/Year	Low	\$0	\$0
		High	\$0	\$5,242
IEQ Productivity Benefit: Reduction in Communicable		Median	\$0	\$3,552
Respiratory Diseases	\$/Year	Low	\$0	\$0
		High	\$0	\$7,105
Urban Park/Tree Benefits: Protect/Restore Open Space: SS 5	\$/	Median	\$0	\$1,672
,	Year	Low	\$0	\$1,444

	1	High	\$0	\$1,900
		Median	0.0	0
Reduced Single Occupancy Vehicle - SS 4.4	Km / Year	Low	0.0	0
	Tear	High	0.0	0
		Median	0.0	0
Reduced Truck Hauling Distance - MR5	Km / Year	Low	0.0	0
	rear	High	0.0	0
		Median	\$0	\$0
FSC Wood Benefits - MR 7 - (Commensurate with Costs)	\$/Year	Low	\$0	\$0
		High	\$0	\$0
		Median	\$0	\$0
Avoided Future Replacement Costs - Base Case Roof	\$/Year	Low	\$0	\$0
		High	\$0	\$0
		Median	\$0	\$0
Residual Value of Base Case Roof Replacement Costs	\$/Year	Low	\$0	\$0
		High	\$0	\$0
		Median	\$0	\$0
Residual Value - Metal Roof (50 yr useful life)	\$/Year	Low	\$0	\$0
		High	\$0	\$0
Costs				
Parameter	Metrics	Year	2014	2015-2044
Incremental Upfront Capital & Soft Costs Total - sum of all		Median	\$69,386	\$0
incremental capital & soft costs from each credit for each	\$	Low	\$34,693	\$0
building		High	\$104,079	\$0
		Median	\$0	\$95
Annual Incremental O&M Cost Total	\$/year	Low	\$0	\$48
		High	\$0	\$143

Table 8. Fort Edmonton Administration

Fort Edmonton Administration: Scenari	io B - Leed) Gold vs L	EED Silver	
Benefits				
Parameter	Metrics	Year	2014	2015-2044
		Median	\$0	\$0
Storm Water Management Benefits (TSS): SS 6.1 & SS 6.2	\$/ Year	Low	\$0	\$0
	rear	High	\$0	\$0
		Median	-	31,843.00
Decreased Potable Water Consumption: WE 3.2	Litres / Year	Low	-	23,882.25
		High	-	39,803.75
Decreased Electricity Consumption: All Credits Within EA 1	KWh/ Year	Median	-	6,517.00

		Low	-	4,887.75
		High	_	8,146.25
		Median	_	78,758.00
Decreased Natural Gas Consumption: All Credits Within EA 1	MJ/ Year	Low	-	59,068.50
		High	_	98,447.50
		Median	\$0	\$5,997
Incremental Non-Energy O&M Decrease: All Credits	\$/ Year	Low	\$0	\$4,498
	rear	High	\$0	\$7,496
		Median	\$0	\$83
IEQ Productivity Benefit: Toxins & Irritants Control	\$/ Year	Low	\$0	\$0
	fear	High	\$0	\$238
		Median	\$0	\$0
IEQ Productivity Benefit: Comfort Control	\$/Year	Low	\$0	\$0
		High	\$0	\$0
		Median	\$0	\$3,184
IEQ Productivity Benefit: Reduction in Communicable	\$/Year	Low	\$0	\$0
Respitory Diseases		High	\$0	\$6,369
		Median	\$0	\$2,090
Urban Park/Tree Benefits: Protect/Restore Open Space: SS 5	\$/	Low	\$0	\$1,805
	Year	High	\$0	\$2,375
	Km / Year	Median	0.0	0
Reduced Single Occupany Vehicle - SS 4.4		Low	0.0	0
		High	0.0	0
		Median	0.0	0
Reduced Truck Hauling Distance - MR5	Km /	Low	0.0	0
-	Year	High	0.0	0
		Median	\$1,675	\$0
FSC Wood Benefits - MR 7 - (Commensurate with Costs, 2014)	\$/Year	Low	\$1,256	\$0
		High	\$2,094	\$0
		Median	\$0	\$0
Avoided Future Replacement Costs - Base Case Roof	\$/Year	Low	\$0	\$0
		High	\$0	\$0
		Median	\$0	\$0
Residual Value of Base Case Roof Replacement Costs	\$/Year	Low	\$0	\$0
		High	\$0	\$0
		Median	\$0	\$0
Residual Value - Metal Roof (50 yr useful life): in year 2044	\$/Year	Low	\$0	\$0
		High	\$0	\$0
Costs	ı			

Parameter	Metrics	Year	2014	2015-2044
Incremental Upfront Capital & Soft Costs Total - sum of all		Median	\$134,520	\$0
incremental capital & soft costs from each credit for each	\$	Low	\$67,260	\$0
building		High	\$201,780	\$0
		Median	\$0	\$0
Annual Incremental O&M Cost Total	\$/year	Low	\$0	\$0
		High	\$0	\$0

Table 9. Edmonton Police Service SW Division Station

Edmonton Police Service SW Division Station:	Scenario B	- LEED G	old vs LEED S	Silver
Benefits				
Parameter	Metrics	Year	2014	2015-2044
		Median	\$0	\$25,952
Storm Water Management Benefits (TSS): SS 6.1 & SS 6.2	\$/ Year	Low	\$0	\$10,253
	Tear	High	\$0	\$41,652
		Median	-	498,225.00
Decreased Potable Water Consumption: WE 3.2	Litres / Year	Low	-	373,668.75
		High	-	622,781.25
		Median	-	216,969.00
Decreased Electricity Consumption: All Credits Within EA 1	KWh/ Year	Low	-	162,726.75
		High	-	271,211.25
		Median	-	749,775.00
Decreased Natural Gas Consumption: All Credits Within EA 1	MJ/ Year	Low	-	562,331.25
			High	-
	\$/	Median	\$0	\$0
Incremental Non-Energy O&M Decrease: All Credits	Year	Low	\$0	\$0
		High	\$0	\$0
	\$/	Median	\$0	\$1,643
IEQ Productivity Benefit: Toxins & Irritants Control	Year	Low	\$0	\$0
		High	\$0	\$4,732
		Median	\$0	\$0
IEQ Productivity Benefit: Comfort Control	\$/Year	Low	\$0	\$0
		High	\$0	\$0
IEQ Productivity Benefit: Reduction in Communicable	\$/Year	Median	\$0	\$31,698
Respitory Diseases	γ, rear	Low	\$0	\$0

		High	\$0	\$63,396
		Median	\$0	\$4,290
Urban Park/Tree Benefits: Protect/Restore Open Space: SS 5	\$/ Year	Low	\$0	\$3,705
	rear	High	\$0	\$4,875
		Median	0.0	0
Reduced Single Occupany Vehicle - SS 4.4	Km / Year	Low	0.0	0
	real	High	0.0	0
		Median	0.0	2,432
Reduced Truck Hauling Distance - MR5	Km / Year	Low	0.0	1,824
	real	High	0.0	3,040
		Median	\$0	\$0
FSC Wood Benefits - MR 7 - (Commensurate with Costs)	\$/Year	Low	\$0	\$0
		High	\$0	\$0
Avoided Future Replacement Costs - Base Case Roof: in year 2034	\$/Year	Median	\$0	\$0
		Low	\$0	\$0
2034		High	\$0	\$0
		Median	\$0	\$0
Residual Value of Base Case Roof Replacement Costs: in year 2044	\$/Year	Low	\$0	\$0
2044		High	\$0	\$0
		Median	\$0	\$0
Residual Value - Metal Roof (50 yr useful life)	\$/Year	Low	\$0	\$0
		High	\$0	\$0
Costs				
Parameter	Metrics	Year	2014	2015-2044
Incremental Upfront Capital & Soft Costs Total - sum of all		Median	\$469,399	\$0
incremental capital & soft costs from each credit for each	\$	Low	\$234,700	\$0
building		High	\$704,099	\$0
		Median	\$0	\$377
Annual Incremental O&M Cost Total	\$/year	Low	\$0	\$189
		High	\$0	\$566

APPENDIX B: INCREMENTAL CREDITS EVALUATION

The following credits have been identified for each project as incremental to alternate case scenario A and B for each of the three case study projects analyzed. This appendix provides additional details, insight, and information into the individual strategies technologies and design approaches taken by each of the case-study projects. Each project's individual solution, to achieve each credit, presents unique probable incremental costs and benefits corresponding to various categories indicated in Section 2.4 of this report. This appendix further lists each probable cost and benefit relating to each credit, the rationale for the result and additional notes regarding the monetization/numeration of each.

SSc5 – Protect/Restore Open Space	SSc5 – Protect/Restore Open Space						
Approach	Cost/Benefit	Notes					
Provided bioswale with high-density	Capital Costs	HDR Estimate (see Appendix C)					
landscaping, and native and	Non-Energy O&M	\$0.26/LF/Yr maintenance premium over					
adaptive plantings in lieu of turf-		standard turf. Values provided by 3 rd party					
grass throughout rest of landscaped		literature.					
areas. Achieved at Gold level and	Tree Benefits	HDR Calculations (values from 3 rd party					
assumed to have been not pursued		literature, see Appendix C).					
at hypothetical Silver level due to	Reduced Storm Flows &	Stormwater management benefits are captured					
cost.	Total Suspended Solids	in SSc6 below but capital and O&M costs					
		relating to landscaping are included in					
		landscape calculations done for this credit					
SSc6 – Storm Water Management	;						
Approach	Cost/Benefit	Notes					
Provided bioswale, and	Capital Costs	HDR Estimate (see Appendix C). Capital costs					
underground storm detention pipes.		for bioswale captured under SSc5 above.					
Achieved at Gold level and assumed		Capital costs for underground storm detention					
not pursued at hypothetical Silver		captured under this credit.					
level.	Non-Energy O&M	Landscape maintenance costs captured in SSc5					
		O&M costs above.					
	Reduced Storm Flows &	HDR Calculations: Flow calculated based on					
	Total Suspended Solids	600L/m2/yr from environment Canada					
		precipitation data. TSS calculated based on					
		aggregate concentrations for various run-off					
		surfaces (values from 3 rd party literature).					
		Avoided costs values used as proxy from City of					
		Calgary study completed by HDR.					
WEc2 – Innovative Waste Water							
Approach	Cost/Benefit	Notes					
Provided waterless urinals, dual-	Capital Costs	HDR Estimate (See Appendix C)					
flush toilets, and sensored lavatory	Non-Energy O&M	Additional maintenance costs include					
faucets to reduce potable water		cleaning/repair of waterless fixtures and					
consumption. Achieved at Gold level		replacing batteries in sensored faucets. Values					
and assumed not pursued at		provided by 3 rd party literature and calculated					
hypothetical silver level.		on a per fixture basis (Appendix C).					
	Water Savings	Savings taken from LEED submittal data, and					
		volume (L/YR) adjusted as beyond 30% savings					
		over LEED defined baseline. 30% beyond LEED					
		defined baseline was hypothesized to be the					
		achieved value in the hypothetical Silver					

Table 1 - Ellerslie Fire Station No. 27

		scenario. WEc2 achieved at Gold level is
		incremental only over what was already achieved at Silver.
WEc3.1 – Water Use Reduction: 3	0%	
Approach	Cost/Benefit	Notes
Provided waterless urinals, dual- flush toilets, sensored lavatory faucts and low-flow showers as per WEc2 above. Achieved at Gold level. Hypothetical Silver scenario would still achieve credit but would	Capital Costs	HDR Estimate (see appendix C). Values provided by 3 rd party literature. It is often stated there a <i>negligible</i> cost premium for these fixtures because it is so small (<50\$). It is still a quantifiable value however and HDR elected to include it in the capital costs.
not use waterless urinals or dual- flush WC's. Low-flow fixtures would be used instead.	Non-Energy O&M	Additional maintenance costs relate to replacing batteries in sensored fixtures. Values provided by 3 rd party literature and calculated on a per fixture basis (Appendix C)
	Water Savings	Savings taken from LEED submittal data, and volume (L/YR) adjusted as beyond 20% savings over LEED defined baseline. 20% beyond LEED defined baseline was considered "standard construction" due to the ubiquity of "low-flow" fixtures in the marketplace.
EAc1 – Optimize Energy Performa		
Approach	Cost/Benefit	Notes
Provided energy efficient design features including increased thermal insulation, in-slab and perimeter radiant heating and cooling, occupancy sensors for lighting, variable frequency drives for pumps and fans and energy recovery ventilators. 7 Points achieved at Gold level. Hypothetical Silver	Capital Costs Non-Energy O&M	 HDR Estimate (see Appendix C). Individual technologies identified with assistance of project design team and estimated based on catalogue data and 3rd party literature. Facilities maintenance identified premature failure of VFD's in existing facilities. Probable cause in the opinion of maintenance staff is under-ventilation of mechanical rooms. List of work orders-by-facility relating to VFD repairs
scenario assumed to achieve 4 points based on NRCan meta- analysis of EUI at different LEED certification levels		was provided and deconstructed into a \$/SF proxy value to determine annual maintenance costs. HDR identified condensing boilers as a possible maintenance cost savings, and occupancy sensors as potentially requiring additional maintenance, however could not find sufficient data on maintenance cost to quantify these variables.
	Electricity & Gas Savings	Energy savings taken from LEED energy modelling data. kWh(e) converted to MJ/YR for use in SROI model. LEED Silver hypothetical scenario adjusted LEED Gold level energy savings by corresponding percentage relative to hypothetical number of points earned based on NRCan EUI meta-analysis. Gold level incremental performance is calculated as beyond that which was achieved at Silver level.
EAc3 – Best Practice Commissioni	ng	

Engaged the services of a 3 rd Cx agent to provide enhanced	Capital Costs	Costs to hire 3 rd party commissioning agent for project provided directly by Client
commissioning services of major	Non-Energy O&M	Calculated as \$0.39/SF O&M savings based on
building systems, ensuring proper		values provided by 3 rd party literature finding
optimization and performance of		less maintenance/adjustments are required on
installed components. Assumed to		properly commissioned systems.
be already achieved at Hypothetical	Electricity & Gas	Calculated as 0.14kWh/SF and 0.58MJ/SF based
Silver level and not incremental at		on 3 rd party literature finding that proper
Gold.		commissioning supports better system
		optimization.
EQc2 – Ventilation Effectiveness		optimization
Approach	Cost/Benefit	Notes
Increased make-up air set points to	Capital Costs	Additional technologies were not required to
provide 1.0 AC/H (30% beyond		achieve this credit. It was achieved by adjusting
ASHRAE 62 recommendations).		the operation of the HVAC system installed.
Achieved at Gold level and assumed to be not pursued at Hypothetical	Non-Energy O&M	Approach does not generate maintenance costs or benefits
Silver level.	Electricity & Gas	Additional electricity (fan energy) and additional
		gas (heat loss) usage result from increased
		ventilation rates, they are countered with the
		use of VFD's and Energy Recovery Ventilation.
		The net impacts are captured in the EAc1 data.
	Productivity	Increased ventilation can lead to productivity
	-	improvement resulting from increased occupant
		comfort and wellness. (See section 2.5)
EQc3.2 – Construction IAQ Manag	ement: Pre-Occupancy	
Approach	Cost/Benefit	Notes
I Flushed building with fresh air for	Capital Costs	
Flushed building with fresh air for set duration until set volume of air	Capital Costs	Building flush-out impacts and extends schedule
set duration until set volume of air	Capital Costs	Building flush-out impacts and extends schedule of project but as it is usually scheduled at the
set duration until set volume of air has been reached. "Cleans" building	Capital Costs	Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and	Capital Costs	Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off-	Capital Costs	Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be		Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs.
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver	Capital Costs Electricity	 Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be		 Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver	Electricity	 Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified.
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver		 Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver	Electricity	 Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead to improved productivity due to reduced
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver	Electricity	 Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver level.	Electricity Productivity	 Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5).
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver level. EQc4.4 – Low Emitting Materials:	Electricity Productivity Composite Wood & Lar	Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs.Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified.Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5).
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver level. EQc4.4 – Low Emitting Materials: Approach	Electricity Productivity Composite Wood & Lar Cost/Benefit	Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs.Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified.Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5).minatesNotes
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver level. EQc4.4 – Low Emitting Materials: Approach Provided low-VOC products for all	Electricity Productivity Composite Wood & Lar	Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs.Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified.Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5).minatesNotesCalculated as a 5% premium on materials
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver level. EQC4.4 – Low Emitting Materials: Approach Provided low-VOC products for all composite wood and laminates to	Electricity Productivity Composite Wood & Lar Cost/Benefit Capital Costs	Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs.Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified.Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5).minatesNotesCalculated as a 5% premium on materials (assumed 60/40 Labour: Material split).
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver level.	Electricity Productivity Composite Wood & Lar Cost/Benefit	Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs.Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified.Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5).minatesNotesCalculated as a 5% premium on materials (assumed 60/40 Labour: Material split).Water-based adhesives are less robust in nature
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver level.	Electricity Productivity Composite Wood & Lar Cost/Benefit Capital Costs	Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs.Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified.Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5).minatesNotesCalculated as a 5% premium on materials (assumed 60/40 Labour: Material split).Water-based adhesives are less robust in nature than solvent based adhesives. Regular repairs
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver level.	Electricity Productivity Composite Wood & Lar Cost/Benefit Capital Costs	Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs.Fan energy used for building flush-out is typically negligible for facilities of this size and has not been quantified.Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5).minatesNotesCalculated as a 5% premium on materials (assumed 60/40 Labour: Material split).Water-based adhesives are less robust in nature than solvent based adhesives. Regular repairs of delaminating casework are often required.
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver level.	Electricity Productivity Composite Wood & Lar Cost/Benefit Capital Costs	Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs.Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified.Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5).minatesNotesCalculated as a 5% premium on materials (assumed 60/40 Labour: Material split).Water-based adhesives are less robust in nature than solvent based adhesives. Regular repairs of delaminating casework are often required. Calculated on a 5 year repair interval and
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver level.	Electricity Productivity Composite Wood & Lar Cost/Benefit Capital Costs	Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs.Fan energy used for building flush-out is typically negligible for facilities of this size and has not been quantified.Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5).minatesNotesCalculated as a 5% premium on materials (assumed 60/40 Labour: Material split).Water-based adhesives are less robust in nature than solvent based adhesives. Regular repairs of delaminating casework are often required.
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver level.	Electricity Productivity Composite Wood & Lar Cost/Benefit Capital Costs	Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs.Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified.Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5).minatesNotesCalculated as a 5% premium on materials (assumed 60/40 Labour: Material split).Water-based adhesives are less robust in nature than solvent based adhesives. Regular repairs of delaminating casework are often required. Calculated on a 5 year repair interval and
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver level.	Electricity Productivity Composite Wood & Lar Cost/Benefit Capital Costs Non-Energy O&M	Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs.Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified.Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5).minatesNotesCalculated as a 5% premium on materials (assumed 60/40 Labour: Material split).Water-based adhesives are less robust in nature than solvent based adhesives. Regular repairs of delaminating casework are often required. Calculated on a 5 year repair interval and amortized on a \$/YR basis in model.
set duration until set volume of air has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Assumed to be achieved at Hypothetical Silver level.	Electricity Productivity Composite Wood & Lar Cost/Benefit Capital Costs Non-Energy O&M	Building flush-out impacts and extends schedule of project but as it is usually scheduled at the end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs.Fan energy used for building flush-out is typically negligible for facilities of this size and has not been quantified.Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5).minatesNotesCalculated as a 5% premium on materials (assumed 60/40 Labour: Material split).Water-based adhesives are less robust in nature than solvent based adhesives. Regular repairs of delaminating casework are often required. Calculated on a 5 year repair interval and amortized on a \$/YR basis in model.Low-VOC products can lead to improved

EQc5 – Indoor Pollutant Control		
Approach	Cost/Benefit	Notes
Installed built-in entrance floor	Capital Costs	Calculated as \$120/SF (supply & install)
grilles at all entrances to building to	Non-Energy O&M	Manufacturer literature suggests entrance
capture dirt and particulate entering	07	grilles can capture of 80% of dirt entering a
the building. Assumed to be		building. This reduction in dirt suggests a
achieved at Hypothetical Silver level		maintenance savings in custodial costs,
		however, sufficient data is not currently
		available to quantify this benefit.
	Productivity	Reducing dirt (and dust) entering a building can
		improve occupant comfort by reducing
		exposure to irritants and allergens. (See section
		2.5)
EQc6.1 – Controllability of System	ns: Perimeter Spaces	
Approach	Cost/Benefit	Notes
Provided operable windows around	Capital Costs	Calculated as a premium cost for operable
perimeter of building and individual		windows beyond fixed windows as LEED Silver
lighting controls in each space.		scenario. (See Appendix C). No premium for
Achieved at Gold level and assumed		additional lighting controls due to configuration
to not be pursued at hypothetical		of floor plan (controls would have been installed
Silver level.		the same way in the alternate scenario).
EQc8 – Daylighting and Views	1	
Approach	Cost/Benefit	Notes
Provided daylighting to 75% of	Capital Costs	Calculated as premium cost for additional
regular occupied spaces and views		glazing and exterior wall assembly in areas
to 90% of occupied spaces by		where intentional floorplate articulation was
locating Fire truck garage in core of		done to achieve these credits. (See Appendix C)
building and user facilities around	Non-Energy O&M	Premium for additional window cleaning
perimeter. Floorplate was oddly		calculated on an SF basis based on values from
(very intentionally) articulated to		3 rd party literature.
allow all offices/sleep rooms access	Electricity & Gas	Additional glazing and exterior wall surface
to operable windows, daylighting and views.		would increase gas usage (heat loss) while
and views.		decreasing electricity usage (lighting power
		density). It is assumed that both of these
		impacts are captured within the data provided via EAc1.
	Productivity	Increased access to natural light and views can
	FIGUUCTIVITY	have a positive impact on building occupant's
		health and wellness and lead to increased
		productivity. (See section 2.5)
IDc1.2 (WEc3) – Exceptional Perfo	ormance: Water Use Re	
Approach	Cost/Benefit	Notes
Achieved via the cumulative effects	Capital Costs	Captured under WEc2 & WEc3 estimates
of WEc2 and WEc3 (exceeded 50%	Non-Energy O&M	Captured under WEc2 & WEc3 estimates
water use reduction compared to	Water Savings	Total savings taken from LEED submittal data
LEED defined baseline).		and incremental volume (L/YR) calculated as
		beyond savings generated via WEc2 & WEc3.
IDc2 – LEED AP		
Approach	Cost/Benefit	Notes
Engaged the services of a LEED	Consultant Fees	Provided directly by Client
accredited professional as a key	Cumulative Effects	The advice and expertise of the LEED AP as
member of the project team.		team member from early in the project in-part,
	1	leads to the results realized throughout all of

	the above credits.
Integrated Design	The requirement for all disciplines to
	collaborate in the design process from the early
	stages of concept design can encourage greater
	innovation, and ultimately lead to better
	performing buildings. Insufficient data is
	available on this effect to quantify it directly,
	but it is assumed to in-part be captured within
	the outcomes of the above credits analyzed.

SSc5 – Alternative Transportation: Parking Capacity				
Approach	Cost/Benefit	Notes		
Provided 'preferred' parking for	Reduced SOV Miles	Implementation of carpooling program induced		
carpooling staff and initiated a		behavior of two FTE's who now carpool		
carpool program with sign-up sheet		together. Previous commute information		
and staff		provided directly by employee who now		
notification/encouragement.		carpools instead of driving a single occupant		
Achieved at Silver level.		vehicle.		
SSc5 – Protect/Restore Open Space	ce			
Approach	Cost/Benefit	Notes		
Not achieved at Silver level but	Capital Costs	HDR Estimate (see Appendix C).		
hypothetically achieved at Gold	Non-Energy O&M	\$0.26/LF/Yr maintenance premium over		
level. Hypothetically, team would		standard turf. Values provided by 3 rd party		
have provided additional planting		literature.		
density and area of new landscaping	Tree Benefits	HDR Calculations (values from 3 rd party		
using native and adaptive plantings.		literature, see Appendix C).		
Current site area meeting habitat				
requirements calculated, less total				
area needed to determine				
additional square footage. Tree				
density of planted area used to				
determine number of plantings in				
additional hypothetical habitat area.				
SSc7.2 – Heat Island Effect: Roof				
Approach	Cost/Benefit	Notes		
Provided metal roof with high solar	Capital Costs	HDR Estimate (see Appendix C)		
reflectivity in lieu of bituminous	Non-Energy O&M	Calculated as avoided regular maintenance		
roofing. Achieved at Silver level.		costs associated with conventional roofing.		
		Values provided by 3 rd party literature.		
	Lifecycle Benefits	Calculated as the avoided replacement cost of		
		standard roofing, based on the extended		
		lifespan of the metal roof. Residual value added		
		for lifecycle remaining beyond study period.		
WEc2 – Innovative Waste Water	WEc2 – Innovative Waste Water			
Approach	Cost/Benefit	Notes		
Not achieved at Silver level but	Capital Costs	HDR Estimate (See Appendix C)		
hypothetically achieved at Gold	Non-Energy O&M	Additional maintenance costs include		
level. Difference assumed to be		cleaning/repair of waterless and ultra-low flow		
that project provided waterless		fixtures. Values provided by 3 rd party literature		
urinals (in lieu of ultra-low flow),		and calculated on a per fixture basis.		
ultra-low flow toilets (in lieu of low-	Water Savings	Savings taken from LEED submittal data, and		

Table 2 – Fort Edmonton Park Administration Building

flow) and low flow sints (in the f		values (L(VD) adjusted of housed 2007 and
flow) and low-flow sinks (in lieu of standard sinks).		volume (L/YR) adjusted as beyond 30% savings over LEED defined baseline. 30% beyond LEED defined baseline was hypothesized to be the achieved value in the hypothetical Silver scenario. WEc2 achieved at Gold level is incremental only over what was already
		achieved at Silver.
WEc3.1 – Water Use Reduction: 3	0%	
Approach	Cost/Benefit	Notes
Provided ultra-low flow urinals and ultra-low flow lavatories. Achieved at Silver level.	Capital Costs	HDR Estimate (see appendix C). Values provided by 3 rd party literature. It is often stated there a <i>negligible</i> cost premium for these fixtures because it is so small (<50\$). It is still a quantifiable value however and HDR elected to include it in the capital costs.
	Non-Energy O&M	Additional maintenance costs relate to cleaning and repair of ultra-low flow fixtures. Values provided by 3 rd party literature and calculated on a per fixture basis.
	Water Savings	Savings taken from LEED submittal data, and volume (L/YR) calculated as beyond 20% savings over LEED defined baseline. 20% beyond LEED defined baseline was considered "standard construction" due to the ubiquity of "low-flow" fixtures in the marketplace.
EAc1 – Optimize Energy Performa	nce	
Approach	Cost/Benefit	Notes
Provided energy efficient design features including perimeter radiant heating, occupancy sensors for lighting and variable frequency	Capital Costs	HDR Estimate (see Appendix C). Individual technologies identified with assistance of project design team and estimated based on catalogue data and 3 rd party literature.
drives for pumps and fans. 7 were achieved at Silver level however, it appears project design team used 'market value' for electricity costs instead of LEED defaults. To compare fairly to other projects, points achieved had to be adjusted based on energy <i>consumption</i> . Number of points at Silver level revised to 3. At hypothetical Gold level, it was assumed that energy recovery ventilation, additional thermal insulation and	Non-Energy O&M	Facilities maintenance identified premature failure of VFD's in existing facilities. Probable cause in the opinion of maintenance staff is under-ventilation of mechanical rooms. List of work orders-by-facility relating to VFD repairs was provided and deconstructed into a \$/SF proxy value to determine annual maintenance costs. HDR identified condensing boilers as a possible maintenance cost savings, and occupancy sensors as potentially requiring additional maintenance, however could not find sufficient data on maintenance cost to quantify these variables.
measurement and verification systems were added to project design. Points achieved at hypothetical Gold level increased to 6 based on NRCan meta-analysis of EUI at different LEED certification levels.	Electricity & Gas Savings	Energy savings taken from LEED energy modelling data. kWh(e) converted to MJ/YR for use in SROI model. LEED Gold hypothetical scenario adjusted LEED Silver level energy savings by corresponding percentage relative to hypothetical number of points earned based on NRCan EUI meta-analysis. Gold level incremental performance is calculated as beyond that which was achieved at Silver level.

EAc3 – Best Practice Commissioni	ng	
Approach	Cost/Benefit	Notes
Engaged the services of a 3 rd Cx agent to provide enhanced	Capital Costs	Costs to hire 3 rd party commissioning agent for project provided directly by Client
commissioning services of major building systems, ensuring proper optimization and performance of installed components. Assumed to	Non-Energy O&M	Calculated as \$0.39/SF O&M savings based on values provided by 3 rd party literature finding less maintenance/adjustments are required on properly commissioned systems.
be already achieved at Hypothetical Silver level and not incremental at Gold.	Electricity & Gas	Calculated as 0.14kWh/SF and 0.58MJ/SF based on 3 rd party literature finding that proper commissioning supports better system optimization.
EAc5 – Measurement and Verifica	tion	
Approach	Cost/Benefit	Notes
Not achieved at Silver level but hypothetically achieved at Gold level. Project hypothetically would have added DDC controls, Electricity sub-metering, and gas sub-metering for all major zones. Water sub- metering is already included in main facility water meter and is not	Capital Costs Non-Energy O&M	HDR Estimate (see Appendix C) Calculated as a 10% reduction in non-utility buildings operations cost due to automated reporting and monitoring of systems. Less time spent by maintenance staff trouble-shooting problems to determine specific area of sub- optimization or failure. Value provided by 3 rd party literature.
considered incremental.	Electricity & Gas Savings	10% energy savings added to values of EAc1 based on 3 rd party literature findings of average performance outcomes (dynamic system optimization).
MRc5 – Regional Materials 20%		
Approach	Cost/Benefit	Notes
Provide 20% of project materials (by cost) that have been extracted and	Capital Costs	No premium based on major building materials used in project.
manufactured regionally (within 800km). Achieved at Silver level.	Reduced Truck Miles	Calculated as one time benefit based on potentially reduced trucking miles for building materials. LEED submittal data provides total truck miles for materials. A % savings is determined by comparing 4 building materials in different manufacturing classes (commodity, medium-value added x2 and high-value added) against the next largest competitor. The difference between the distance to plant location of what was used in the project and plant location of competing manufacturer becomes the basis of reduced miles. Due to the challenges of determining distance between point of extraction and manufacturing plant, distance from project site to point of extraction is not analyzed.
MRc7 – Certified Wood	Cost/Ronofit	Notos
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would have provided 50% of wood products from FSC certified sources.	Cost/Benefit Capital Cost FSC Wood Social Value	Notes Previous studies by HDR have determined that the social value of FSC wood is equal to the additional capital cost, and as such no benefits or costs are realized in utilizing it.

EQc1 – Carbone Dioxide (CO2) Monit	oring	
Approach	Cost/Benefit	Notes
Not achieved at Silver level but	Capital Costs	Calculated based on 3 rd party literature on a per
hypothetically achieved at Gold	cupital costs	sensor basis. Quantity determined based on
level. Project would have		logical locations in the opinion of HDR.
incorporated CO2 sensors in	Non-Energy O&M	Calculated as the annual cost of recalibration of
intermittently occupied spaces and	Non-Energy Oalvi	sensors. High-end modern sensors are self-
zones to allow demand controlled		
ventilation.		recalibrating, however still need semi-annual
ventilation.	Droductivity	adjustments. Increased and proper ventilation can increase
	Productivity	occupant comfort and wellness and lead to
		increased productivity. (see section 2.5)
EQc2 – Ventilation Effectiveness		increased productivity. (see section 2.5)
Approach	Cost/Benefit	Notes
Not achieved at Silver level but	Capital Costs	Additional technologies are not required to
hypothetically achieved at Gold.	Capital Costs	achieve this hypothetical approach.
Project would hypothetically	Non-Energy O&M	Approach does not generate maintenance costs
Increase make-up air set points to	Non-Energy Oalvi	or benefits
provide 1.0 AC/H (30% beyond	Electricity & Gas	Additional electricity (fan energy) and additional
ASHRAE 62 recommendations).	Liectricity & Cas	gas (heat loss) usage result from increased
ASIMAL 02 recommendations).		ventilation rates, they are countered with the
		use of VFD's and Energy Recovery Ventilation.
		The net impacts are captured in the
		hypothetical EAc1 data.
	Productivity	Increased ventilation can lead to productivity
	FIGUUCLIVILY	improvement resulting from increased occupant
		comfort and wellness. (See section 2.5)
EQc3.2 – Construction IAQ Manag	ement: Pre-Occupancy	
Approach	Cost/Benefit	Notes
Flushed building with fresh air for	Capital Costs	Building flush-out impacts and extends schedule
set duration until set volume of air		-
		of project but as it is usually scheduled at the
		of project but as it is usually scheduled at the end of the project (immediately prior to
has been reached. "Cleans" building		end of the project (immediately prior to
has been reached. "Cleans" building of dust, construction residues, and		end of the project (immediately prior to occupancy) the contractor can demobilize
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off-		end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Achieved at	Electricity	end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs.
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off-	Electricity	 end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Achieved at	Electricity	 end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Achieved at		 end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified.
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Achieved at	Electricity Productivity	 end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Achieved at		 end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead to improved productivity due to reduced
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Achieved at		 end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Achieved at Silver level.	Productivity	 end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5).
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Achieved at	Productivity	 end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5).
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Achieved at Silver level.	Productivity Composite Wood & La	 end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5).
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Achieved at Silver level. EQc4.4 – Low Emitting Materials: Approach	Productivity Composite Wood & Lau Cost/Benefit	 end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5). Notes
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Achieved at Silver level. EQc4.4 – Low Emitting Materials: Approach Provided low-VOC products for all	Productivity Composite Wood & Lat Cost/Benefit Capital Costs	 end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5). minates Notes Calculated as a 5% premium on materials
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Achieved at Silver level. EQc4.4 – Low Emitting Materials: Approach Provided low-VOC products for all composite wood and laminates to	Productivity Composite Wood & Lau Cost/Benefit	 end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5). minates Notes Calculated as a 5% premium on materials (assumed 60/40 Labour: Material split). Water-based adhesives are less robust in nature
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Achieved at Silver level.	Productivity Composite Wood & Lat Cost/Benefit Capital Costs	 end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5). minates Notes Calculated as a 5% premium on materials (assumed 60/40 Labour: Material split). Water-based adhesives are less robust in nature than solvent based adhesives. Regular repairs
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Achieved at Silver level. EQc4.4 – Low Emitting Materials: Approach Provided low-VOC products for all composite wood and laminates to reduce off-gassing and occupant discomfort. Assumed to be	Productivity Composite Wood & Lat Cost/Benefit Capital Costs	 end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5). minates Notes Calculated as a 5% premium on materials (assumed 60/40 Labour: Material split). Water-based adhesives are less robust in nature than solvent based adhesives. Regular repairs of delaminating casework are often required.
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Achieved at Silver level. EQc4.4 – Low Emitting Materials: Approach Provided low-VOC products for all composite wood and laminates to reduce off-gassing and occupant discomfort. Assumed to be achieved at Hypothetical Silver	Productivity Composite Wood & Lat Cost/Benefit Capital Costs	 end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5). minates Notes Calculated as a 5% premium on materials (assumed 60/40 Labour: Material split). Water-based adhesives are less robust in nature than solvent based adhesives. Regular repairs of delaminating casework are often required. Calculated on a 5 year repair interval and
has been reached. "Cleans" building of dust, construction residues, and to a lesser extent VOC's from off- gassing products. Achieved at Silver level. EQc4.4 – Low Emitting Materials: Approach Provided low-VOC products for all composite wood and laminates to reduce off-gassing and occupant discomfort. Assumed to be achieved at Hypothetical Silver	Productivity Composite Wood & Lat Cost/Benefit Capital Costs	 end of the project (immediately prior to occupancy) the contractor can demobilize during flush-out without incurring additional costs. Fan energy used for building flush-out is typically <i>negligible</i> for facilities of this size and has not been quantified. Pre-Occupancy air quality management can lead to improved productivity due to reduced adverse reactions to VOCs, dust and other allergens. (See section 2.5). minates Notes Calculated as a 5% premium on materials (assumed 60/40 Labour: Material split). Water-based adhesives are less robust in nature than solvent based adhesives. Regular repairs of delaminating casework are often required.

		reactions to VOCs and other irritants. (See
		section 2.5).
EQc5 – Indoor Pollutant Control		
Approach	Cost/Benefit	Notes
Installed built-in entrance floor	Capital Costs	Calculated as \$120/SF (supply & install)
grilles at all entrances to building to	Non-Energy O&M	Manufacturer literature suggests entrance
capture dirt and particulate entering		grilles can capture of 80% of dirt entering a
the building. Assumed to be		building. This reduction in dirt suggests a
achieved at Hypothetical Silver level		maintenance savings in custodial costs,
		however, sufficient data is not currently
	Productivity	available to quantify this benefit. Reducing dirt (and dust) entering a building can
	FIGUUCIIVILY	improve occupant comfort by reducing
		exposure to irritants and allergens. (See section
		2.5)
EQc6.2 – Controllability of System	s: Non-Perimeter Spac	
Approach	Cost/Benefit	Notes
Provided additional Thermostat	Capital Costs	Calculated using 3 rd party literature values, on
controls and variable air volume		per control basis.
boxes in non-perimeter spaces to	Non-Energy O&M	Intuitively, additional thermostats and VAVs
allow individual occupant control of		would increase the amount of maintenance
temperature and ventilation.		required due to the fact there is simply more
Achieved at Silver level.		equipment to maintain. Insufficient data on
		these maintenance costs was available to
	Due du etivitu	quantify this impact.
	Productivity	A higher degree of occupant control can enhance occupant comfort and lead to greater
		productivity. (See section 2.5)
EQc8 – Daylighting and Views		productivity. (See Section 2.5)
Approach	Cost/Benefit	Notes
	Capital Costs	Coloulated as meanium cost for additional rollar
Provided daylighting to 75% of	Capital Custs	Calculated as premium cost for additional roller
Provided daylighting to 75% of regular occupied spaces and views	Capital Costs	shades to meet glare control requirements only.
	Capital Costs	•
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory		shades to meet glare control requirements only. Building concept design achieved daylighting requirements.
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory glazing. Building typology and	Non-Energy O&M	shades to meet glare control requirements only. Building concept design achieved daylighting
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory glazing. Building typology and concept design is conducive to	Non-Energy O&M Electricity & Gas	 shades to meet glare control requirements only. Building concept design achieved daylighting requirements. Not applicable based on DL strategy No impact based on DL strategy
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory glazing. Building typology and concept design is conducive to achieving this credit. Roller shades	Non-Energy O&M	 shades to meet glare control requirements only. Building concept design achieved daylighting requirements. Not applicable based on DL strategy No impact based on DL strategy Increased access to natural light and views can
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory glazing. Building typology and concept design is conducive to achieving this credit. Roller shades were provided to meet glare control	Non-Energy O&M Electricity & Gas	 shades to meet glare control requirements only. Building concept design achieved daylighting requirements. Not applicable based on DL strategy No impact based on DL strategy Increased access to natural light and views can have a positive impact on building occupant's
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory glazing. Building typology and concept design is conducive to achieving this credit. Roller shades were provided to meet glare control requirements. Achieved at Silver	Non-Energy O&M Electricity & Gas	 shades to meet glare control requirements only. Building concept design achieved daylighting requirements. Not applicable based on DL strategy No impact based on DL strategy Increased access to natural light and views can have a positive impact on building occupant's health and wellness and lead to increased
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory glazing. Building typology and concept design is conducive to achieving this credit. Roller shades were provided to meet glare control requirements. Achieved at Silver level	Non-Energy O&M Electricity & Gas	 shades to meet glare control requirements only. Building concept design achieved daylighting requirements. Not applicable based on DL strategy No impact based on DL strategy Increased access to natural light and views can have a positive impact on building occupant's
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory glazing. Building typology and concept design is conducive to achieving this credit. Roller shades were provided to meet glare control requirements. Achieved at Silver level IDc1.1 – Green Furniture	Non-Energy O&M Electricity & Gas Productivity	 shades to meet glare control requirements only. Building concept design achieved daylighting requirements. Not applicable based on DL strategy No impact based on DL strategy Increased access to natural light and views can have a positive impact on building occupant's health and wellness and lead to increased productivity. (See section 2.5)
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory glazing. Building typology and concept design is conducive to achieving this credit. Roller shades were provided to meet glare control requirements. Achieved at Silver level IDc1.1 – Green Furniture Approach	Non-Energy O&M Electricity & Gas Productivity Cost/Benefit	 shades to meet glare control requirements only. Building concept design achieved daylighting requirements. Not applicable based on DL strategy No impact based on DL strategy Increased access to natural light and views can have a positive impact on building occupant's health and wellness and lead to increased productivity. (See section 2.5) Notes
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory glazing. Building typology and concept design is conducive to achieving this credit. Roller shades were provided to meet glare control requirements. Achieved at Silver level IDc1.1 – Green Furniture	Non-Energy O&M Electricity & Gas Productivity	 shades to meet glare control requirements only. Building concept design achieved daylighting requirements. Not applicable based on DL strategy No impact based on DL strategy Increased access to natural light and views can have a positive impact on building occupant's health and wellness and lead to increased productivity. (See section 2.5) Notes Client confirmed no cost premium.
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory glazing. Building typology and concept design is conducive to achieving this credit. Roller shades were provided to meet glare control requirements. Achieved at Silver level IDc1.1 – Green Furniture Approach Provided "green furniture" for all	Non-Energy O&M Electricity & Gas Productivity Cost/Benefit Capital Cost	 shades to meet glare control requirements only. Building concept design achieved daylighting requirements. Not applicable based on DL strategy No impact based on DL strategy Increased access to natural light and views can have a positive impact on building occupant's health and wellness and lead to increased productivity. (See section 2.5) Notes
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory glazing. Building typology and concept design is conducive to achieving this credit. Roller shades were provided to meet glare control requirements. Achieved at Silver level IDc1.1 – Green Furniture Approach Provided "green furniture" for all systems furniture and seating.	Non-Energy O&M Electricity & Gas Productivity Cost/Benefit Capital Cost	 shades to meet glare control requirements only. Building concept design achieved daylighting requirements. Not applicable based on DL strategy No impact based on DL strategy Increased access to natural light and views can have a positive impact on building occupant's health and wellness and lead to increased productivity. (See section 2.5) Notes Client confirmed no cost premium. Low-VOC products can lead to improved
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory glazing. Building typology and concept design is conducive to achieving this credit. Roller shades were provided to meet glare control requirements. Achieved at Silver level IDc1.1 – Green Furniture Approach Provided "green furniture" for all systems furniture and seating. Green furniture requires low or zero VOC materials and finishes and often incorporates recycled content.	Non-Energy O&M Electricity & Gas Productivity Cost/Benefit Capital Cost	 shades to meet glare control requirements only. Building concept design achieved daylighting requirements. Not applicable based on DL strategy No impact based on DL strategy Increased access to natural light and views can have a positive impact on building occupant's health and wellness and lead to increased productivity. (See section 2.5) Notes Client confirmed no cost premium. Low-VOC products can lead to improved occupant productivity due to fewer adverse
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory glazing. Building typology and concept design is conducive to achieving this credit. Roller shades were provided to meet glare control requirements. Achieved at Silver level IDc1.1 – Green Furniture Approach Provided "green furniture" for all systems furniture and seating. Green furniture requires low or zero VOC materials and finishes and	Non-Energy O&M Electricity & Gas Productivity Cost/Benefit Capital Cost	 shades to meet glare control requirements only. Building concept design achieved daylighting requirements. Not applicable based on DL strategy No impact based on DL strategy Increased access to natural light and views can have a positive impact on building occupant's health and wellness and lead to increased productivity. (See section 2.5) Notes Client confirmed no cost premium. Low-VOC products can lead to improved occupant productivity due to fewer adverse reactions to VOCs and other irritants. (See
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory glazing. Building typology and concept design is conducive to achieving this credit. Roller shades were provided to meet glare control requirements. Achieved at Silver level IDc1.1 – Green Furniture Approach Provided "green furniture" for all systems furniture and seating. Green furniture requires low or zero VOC materials and finishes and often incorporates recycled content.	Non-Energy O&M Electricity & Gas Productivity Cost/Benefit Capital Cost Productivity	 shades to meet glare control requirements only. Building concept design achieved daylighting requirements. Not applicable based on DL strategy No impact based on DL strategy Increased access to natural light and views can have a positive impact on building occupant's health and wellness and lead to increased productivity. (See section 2.5) Notes Client confirmed no cost premium. Low-VOC products can lead to improved occupant productivity due to fewer adverse reactions to VOCs and other irritants. (See section 2.5).
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory glazing. Building typology and concept design is conducive to achieving this credit. Roller shades were provided to meet glare control requirements. Achieved at Silver level IDC1.1 – Green Furniture Approach Provided "green furniture" for all systems furniture and seating. Green furniture requires low or zero VOC materials and finishes and often incorporates recycled content. Achieved at Silver level.	Non-Energy O&M Electricity & Gas Productivity Cost/Benefit Capital Cost Productivity	 shades to meet glare control requirements only. Building concept design achieved daylighting requirements. Not applicable based on DL strategy No impact based on DL strategy Increased access to natural light and views can have a positive impact on building occupant's health and wellness and lead to increased productivity. (See section 2.5) Notes Client confirmed no cost premium. Low-VOC products can lead to improved occupant productivity due to fewer adverse reactions to VOCs and other irritants. (See section 2.5).
regular occupied spaces and views to 90% of occupied spaces by use of a narrow floor plate and clerestory glazing. Building typology and concept design is conducive to achieving this credit. Roller shades were provided to meet glare control requirements. Achieved at Silver level IDC1.1 – Green Furniture Approach Provided "green furniture" for all systems furniture and seating. Green furniture requires low or zero VOC materials and finishes and often incorporates recycled content. Achieved at Silver level. IDC1.2 (WEc3) – Exceptional Perfor	Non-Energy O&M Electricity & Gas Productivity Cost/Benefit Capital Cost Productivity	 shades to meet glare control requirements only. Building concept design achieved daylighting requirements. Not applicable based on DL strategy No impact based on DL strategy Increased access to natural light and views can have a positive impact on building occupant's health and wellness and lead to increased productivity. (See section 2.5) Notes Client confirmed no cost premium. Low-VOC products can lead to improved occupant productivity due to fewer adverse reactions to VOCs and other irritants. (See section 2.5).

Would be achieved via the cumulative effects of WEc2 and WEc3 (exceeded 50% water use reduction compared to LEED defined baseline).	Water Savings	Total savings taken from LEED submittal data and incremental volume (L/YR) calculated hypothetically as beyond savings generated via WEc2 & WEc3 up to 50% savings.
IDc2 – LEED AP	Cost/Donofit	Notes
Approach	Cost/Benefit	
Engaged the services of a LEED	Consultant Fees	Provided directly by Client
accredited professional as a key	Cumulative Effects	The advice and expertise of the LEED AP as
member of the project team.		team member from early in the project in-part,
		leads to the results realized throughout all of
		the above credits.
	Integrated Design	The requirement for all disciplines to
		collaborate in the design process from the early
		stages of concept design can encourage greater
		innovation, and ultimately lead to better
		performing buildings. Insufficient data is
		available on this effect to quantify it directly,
		but it is assumed to in-part be captured within
		the outcomes of the above credits analyzed.

Table 3 – South-West Edmonton Police Services

SSc5 – Protect/Restore Open Space			
Approach	Cost/Benefit	Notes	
Not achieved at Silver level but hypothetically could be achieved at	Capital Costs Non-Energy O&M	HDR Estimate (see Appendix C) \$0.26/LF/Yr maintenance premium over	
Gold. Hypothetical scenario would include some radical site plan		standard turf. Values provided by 3 rd party literature.	
changes including the elimination of visitor parking (street parking only)	Tree Benefits	HDR Calculations (values from 3 rd party literature, see Appendix C).	
and the creation of a green roof on the Southernmost, single storey block. Newly landscaped area would be provided with high- density landscaping, and native and adaptive plantings in lieu of non- porous surfaces or turf-grass. Current site area meeting habitat requirements calculated, less total area needed to determine additional square footage. Tree density of existing (at Silver level) planted areas used to determine number of plantings in additional hypothetical habitat area.	Reduced Storm Flows & Total Suspended Solids	Stormwater management benefits are captured in SSc6 below but capital and O&M costs relating to landscaping are included in landscape calculations done for this credit	
SSc6 – Storm Water Management			
Approach	Cost/Benefit	Notes	
Not achieved at Silver level but hypothetically achieved at Gold. In addition to the hypothetical site plan redesign noted under SSc5	Capital Costs	HDR Estimate (see Appendix C). Capital costs for swales and landcape based features captured under SSc5 above. Capital costs for pervious paving captured under this credit.	

	1	1
above, and the roof top rainwater harvesting system (WEc3) pervious	Non-Energy O&M	Landscape maintenance costs captured in SSc5 O&M costs above.
paving would need to be	Reduced Storm Flows &	HDR Calculations: Flow calculated based on
incorporated throughout roughly	Total Suspended Solids	600L/m2/yr from environment Canada
15% of remaining parking area.		precipitation data. TSS calculated based on
		aggregate concentrations for various run-off
		surfaces (values from 3 rd party literature).
		Avoided costs values used as proxy from City of
		Calgary study completed by HDR.
SSc7.2 – Heat Island Effect: Roof		
Approach	Cost/Benefit	Notes
Provided high reflectivity/high-	Capital Costs	HDR Estimate (see Appendix C)
albedo white roofing for portion of	Non-Energy O&M	Calculated as avoided interval maintenance
roof area in lieu of conventional		costs associated with conventional roofing.
bituminous roofing. Achieved at		Values provided by 3 rd party literature. LEED
Silver level.		submittal documents noted an "albedo
		maintenance program" (white roof cleaning)
		which should have an associated maintenance
		cost, but insufficient data existed to quantify.
	Electricity & Gas	White roof membrane lowers cooling load
		during cooling season (electricity) but slightly
		increases heating load during heating season
		(gas). 3 rd party literature study adjusted to
		reflect Edmonton Heating Degree days/year
		(6525 @ 18deg C) and Cooling Degree Days (84
		@ 18deg C) found heating penalty considerably
		exceeds cooling benefit.
	Lifecycle Benefits	Calculated as the avoided replacement cost of
		standard roofing, based on the extended
		lifespan of the metal roof. Residual value added
		for lifecycle remaining beyond study period.
WEc2 – Innovative Waste Water		
Approach	Cost/Benefit	Notes
Not achieved at Silver level but	Capital Costs	HDR Estimate (See Appendix C)
hypothetically achieved at Gold. In	Non-Energy O&M	Additional maintenance costs include
addition to rainwater harvester,		cleaning/repair of waterless and ultra-low flow
water urinals would be installed (in-		fixtures. Values provided by 3 rd party literature
lieu of low-flow) and ultra-low flow		and calculated on a per fixture basis
WC's (in lieu of low-flow) for all staff	Water Savings	LEED submittal data was incomplete however
fixtures.		number of FTE was known and mechanical
		drawings indicated schedule of fixtures and
		sizing of rainwater system. HDR completed
		LEED letter template to establish baseline case
		and projected water savings. Volume (L/YR)
		adjusted as beyond 30% savings over LEED
		defined baseline. 30% beyond LEED defined
		baseline was achieved value at Silver level.
		WEc2 achieved at Gold level is incremental only
		over what was already achieved at Silver.
WEc3.1 – Water Use Reduction: 3		
Approach	Cost/Benefit	Notes
Provided low-flow urinals, toilets	Capital Costs	Cost of rainwater system provided by
and sensored lavatories for all staff		Contractor/Client. No premium for fixtures.

fixtures. Transient (holding cell) fixtures not used in equation. Provided 50,000L roof top rainwater harvesting system to flush toilets and urinals as well as divert storm water (SSc6). Achieved at Silver level.	Non-Energy O&M Water Savings	Additional maintenance may be required to change filters on rainwater harvesting system, however insufficient data exists to quantify those costs. LEED submittal data was incomplete however number of FTE was known and mechanical drawings indicated schedule of fixtures and sizing of rainwater system. HDR completed LEED letter template to establish baseline case and projected water savings. Volume (L/YR) adjusted volume (L/YR) adjusted as beyond 20% savings over LEED defined baseline. 20% beyond LEED defined baseline was considered "standard construction" due to the ubiquity of
	Reduced Storm Flows and Total Suspended Solids	"low-flow" fixtures in the marketplace. Roof area and flow calculated similarly to site based storm flows. TSS concentrations adjusted to reflect rooftop as run-off surface. TSS values added to total under SSc6 in SROI model.
EAc1 – Optimize Energy Performa	nce	
Approach	Cost/Benefit	Notes
Provided energy efficient design features including increased thermal insulation, condensing boilers, occupancy sensors for lighting, variable frequency drives for pumps	Capital Costs Non-Energy O&M	HDR Estimate (see Appendix C). Individual technologies identified with assistance of project design team and estimated based on catalogue data and 3 rd party literature. Facilities maintenance identified premature
and fans and energy recovery ventilators. 6 Points achieved at Silver level. Hypothetical Gold scenario assumed to achieve 9 points based on NRCan meta- analysis of EUI at different LEED certification levels, and would additionally include super insulation, daylight automatic dimming controls, triple glazed windows and LED lighting.		failure of VFD's in existing facilities. Probable cause in the opinion of maintenance staff is under-ventilation of mechanical rooms. List of work orders-by-facility relating to VFD repairs was provided and deconstructed into a \$/SF proxy value to determine annual maintenance costs. HDR identified condensing boilers as a possible maintenance cost savings, and occupancy sensors as potentially requiring additional maintenance, however could not find sufficient data on maintenance cost to quantify these variables.
	Electricity & Gas Savings	LEED submittal data incomplete. However, real utility data was known and total projected energy savings was provided by consultant (modelling in progress). HDR worked backwards to establish baseline usage versus design case savings. kWh(e) converted to MJ/YR for use in SROI model. LEED Gold hypothetical scenario adjusted LEED Silver level energy savings by corresponding percentage relative to hypothetical number of points earned based on NRCan EUI meta-analysis. Gold level incremental performance is calculated as beyond that which was achieved at Silver level
EAc3 – Best Practice Commissioni		
Approach	Cost/Benefit	Notes

SROI	SUSTAINABLE RETURN ON INVESTMENT	ЮR
------	-------------------------------------	----

Engaged the services of a 3 rd Cx agent to provide enhanced	Capital Costs	Costs to hire 3 rd party commissioning agent for project provided directly by Client
commissioning services of major	Non-Energy O&M	Calculated as \$0.39/SF O&M savings based on
building systems, ensuring proper		values provided by 3 rd party literature finding
optimization and performance of		less maintenance/adjustments are required on
installed components. Achieved at		properly commissioned systems.
Silver level and not incremental at	Electricity & Gas	Calculated as 0.14kWh/SF and 0.58MJ/SF based
Gold.	,	on 3 rd party literature finding that proper
		commissioning supports better system
		optimization.
MRc5 – Regional Materials 20%		
Approach	Cost/Benefit	Notes
Not achieved at Silver level but	Capital Costs	No premium based on major materials used in
hypothetically achieved at gold.		project.
Project would have provided 20% of	Reduced Truck Miles	Calculated as one time benefit based on
project materials (by cost) that have		potentially reduced trucking miles for building
been extracted and manufactured		materials. LEED submittal data provides total
regionally (within 800km).		truck miles for materials. A % savings is
		determined by comparing 4 building materials
		in different manufacturing classes (commodity,
		medium-value added x2 and high-value added)
		against the next largest competitor. The
		difference between the distance to plant
		location of what was used in the project and
		plant location of competing manufacturer
		becomes the basis of reduced miles. Due to the
		challenges of determining distance between
		point of extraction and manufacturing plant,
		01,
		distance from project site to point of extraction
EQc2 – Ventilation Effectiveness		distance from project site to point of extraction
Approach	Cost/Benefit	distance from project site to point of extraction
	Cost/Benefit Capital Costs	distance from project site to point of extraction is not analyzed.
Approach Not achieved at Silver level but hypothetically achieved at Gold.		distance from project site to point of extraction is not analyzed. Notes
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air		distance from project site to point of extraction is not analyzed.NotesAdditional technologies would not be required to achieve this credit.Approach does not generate maintenance costs
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30%	Capital Costs	distance from project site to point of extraction is not analyzed. Notes Additional technologies would not be required to achieve this credit.
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30% beyond ASHRAE 62	Capital Costs	distance from project site to point of extraction is not analyzed. Notes Additional technologies would not be required to achieve this credit. Approach does not generate maintenance costs or benefits Additional electricity (fan energy) and additional
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30%	Capital Costs Non-Energy O&M	distance from project site to point of extraction is not analyzed. Notes Additional technologies would not be required to achieve this credit. Approach does not generate maintenance costs or benefits Additional electricity (fan energy) and additional gas (heat loss) usage result from increased
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30% beyond ASHRAE 62	Capital Costs Non-Energy O&M	 distance from project site to point of extraction is not analyzed. Notes Additional technologies would not be required to achieve this credit. Approach does not generate maintenance costs or benefits Additional electricity (fan energy) and additional gas (heat loss) usage result from increased ventilation rates, but they are countered with
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30% beyond ASHRAE 62	Capital Costs Non-Energy O&M	distance from project site to point of extraction is not analyzed. Notes Additional technologies would not be required to achieve this credit. Approach does not generate maintenance costs or benefits Additional electricity (fan energy) and additional gas (heat loss) usage result from increased ventilation rates, but they are countered with the use of VFD's and Energy Recovery
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30% beyond ASHRAE 62	Capital Costs Non-Energy O&M	distance from project site to point of extraction is not analyzed. Notes Additional technologies would not be required to achieve this credit. Approach does not generate maintenance costs or benefits Additional electricity (fan energy) and additional gas (heat loss) usage result from increased ventilation rates, but they are countered with the use of VFD's and Energy Recovery Ventilation. The net impacts are captured in the
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30% beyond ASHRAE 62	Capital Costs Non-Energy O&M Electricity & Gas	distance from project site to point of extraction is not analyzed. Notes Additional technologies would not be required to achieve this credit. Approach does not generate maintenance costs or benefits Additional electricity (fan energy) and additional gas (heat loss) usage result from increased ventilation rates, but they are countered with the use of VFD's and Energy Recovery Ventilation. The net impacts are captured in the hypothetical Gold level EAc1 data.
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30% beyond ASHRAE 62	Capital Costs Non-Energy O&M	distance from project site to point of extraction is not analyzed.NotesAdditional technologies would not be required to achieve this credit.Approach does not generate maintenance costs or benefitsAdditional electricity (fan energy) and additional gas (heat loss) usage result from increased ventilation rates, but they are countered with the use of VFD's and Energy Recovery Ventilation. The net impacts are captured in the hypothetical Gold level EAc1 data.Increased ventilation can lead to productivity
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30% beyond ASHRAE 62	Capital Costs Non-Energy O&M Electricity & Gas	 distance from project site to point of extraction is not analyzed. Notes Additional technologies would not be required to achieve this credit. Approach does not generate maintenance costs or benefits Additional electricity (fan energy) and additional gas (heat loss) usage result from increased ventilation rates, but they are countered with the use of VFD's and Energy Recovery Ventilation. The net impacts are captured in the hypothetical Gold level EAc1 data. Increased ventilation can lead to productivity improvement resulting from increased occupant
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30% beyond ASHRAE 62 recommendations).	Capital Costs Non-Energy O&M Electricity & Gas Productivity	distance from project site to point of extraction is not analyzed.NotesAdditional technologies would not be required to achieve this credit.Approach does not generate maintenance costs or benefitsAdditional electricity (fan energy) and additional gas (heat loss) usage result from increased ventilation rates, but they are countered with the use of VFD's and Energy Recovery Ventilation. The net impacts are captured in the hypothetical Gold level EAc1 data.Increased ventilation can lead to productivity
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30% beyond ASHRAE 62 recommendations).	Capital Costs Non-Energy O&M Electricity & Gas Productivity sement: Pre-Occupancy	distance from project site to point of extraction is not analyzed. Notes Additional technologies would not be required to achieve this credit. Approach does not generate maintenance costs or benefits Additional electricity (fan energy) and additional gas (heat loss) usage result from increased ventilation rates, but they are countered with the use of VFD's and Energy Recovery Ventilation. The net impacts are captured in the hypothetical Gold level EAc1 data. Increased ventilation can lead to productivity improvement resulting from increased occupant comfort and wellness. (See section 2.5)
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30% beyond ASHRAE 62 recommendations).	Capital Costs Non-Energy O&M Electricity & Gas Productivity cement: Pre-Occupancy Cost/Benefit	distance from project site to point of extraction is not analyzed. Notes Additional technologies would not be required to achieve this credit. Approach does not generate maintenance costs or benefits Additional electricity (fan energy) and additional gas (heat loss) usage result from increased ventilation rates, but they are countered with the use of VFD's and Energy Recovery Ventilation. The net impacts are captured in the hypothetical Gold level EAc1 data. Increased ventilation can lead to productivity improvement resulting from increased occupant comfort and wellness. (See section 2.5)
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30% beyond ASHRAE 62 recommendations). EQc3.2 – Construction IAQ Manage Approach Conducted IAQ testing prior to	Capital Costs Non-Energy O&M Electricity & Gas Productivity sement: Pre-Occupancy	distance from project site to point of extraction is not analyzed.NotesAdditional technologies would not be required to achieve this credit.Approach does not generate maintenance costs or benefitsAdditional electricity (fan energy) and additional gas (heat loss) usage result from increased ventilation rates, but they are countered with the use of VFD's and Energy Recovery Ventilation. The net impacts are captured in the hypothetical Gold level EAc1 data.Increased ventilation can lead to productivity improvement resulting from increased occupant comfort and wellness. (See section 2.5)NotesCalculated on an SF basis using values from 3rd
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30% beyond ASHRAE 62 recommendations). EQc3.2 – Construction IAQ Manage Approach Conducted IAQ testing prior to occupancy to ensure VOC levels	Capital Costs Non-Energy O&M Electricity & Gas Productivity cost/Benefit Capital Costs	distance from project site to point of extraction is not analyzed. Notes Additional technologies would not be required to achieve this credit. Approach does not generate maintenance costs or benefits Additional electricity (fan energy) and additional gas (heat loss) usage result from increased ventilation rates, but they are countered with the use of VFD's and Energy Recovery Ventilation. The net impacts are captured in the hypothetical Gold level EAc1 data. Increased ventilation can lead to productivity improvement resulting from increased occupant comfort and wellness. (See section 2.5) Notes Calculated on an SF basis using values from 3 rd party literature.
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30% beyond ASHRAE 62 recommendations). EQc3.2 – Construction IAQ Manage Approach Conducted IAQ testing prior to occupancy to ensure VOC levels were at an imperceptible threshold	Capital Costs Non-Energy O&M Electricity & Gas Productivity cement: Pre-Occupancy Cost/Benefit	distance from project site to point of extraction is not analyzed.NotesAdditional technologies would not be required to achieve this credit.Approach does not generate maintenance costs or benefitsAdditional electricity (fan energy) and additional gas (heat loss) usage result from increased ventilation rates, but they are countered with the use of VFD's and Energy Recovery Ventilation. The net impacts are captured in the hypothetical Gold level EAc1 data.Increased ventilation can lead to productivity improvement resulting from increased occupant comfort and wellness. (See section 2.5)NotesCalculated on an SF basis using values from 3rd party literature.Pre-Occupancy air quality management can lead
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30% beyond ASHRAE 62 recommendations). EQC3.2 – Construction IAQ Manage Approach Conducted IAQ testing prior to occupancy to ensure VOC levels were at an imperceptible threshold before occupants moved in.	Capital Costs Non-Energy O&M Electricity & Gas Productivity cost/Benefit Capital Costs	distance from project site to point of extraction is not analyzed.NotesAdditional technologies would not be required to achieve this credit.Approach does not generate maintenance costs or benefitsAdditional electricity (fan energy) and additional gas (heat loss) usage result from increased ventilation rates, but they are countered with the use of VFD's and Energy Recovery Ventilation. The net impacts are captured in the hypothetical Gold level EAc1 data.Increased ventilation can lead to productivity improvement resulting from increased occupant comfort and wellness. (See section 2.5)NotesCalculated on an SF basis using values from 3rd party literature.Pre-Occupancy air quality management can lead to improved productivity due to reduced
Approach Not achieved at Silver level but hypothetically achieved at Gold. Project would Increase make-up air set points to provide 1.0 AC/H (30% beyond ASHRAE 62 recommendations). EQc3.2 – Construction IAQ Manage Approach Conducted IAQ testing prior to occupancy to ensure VOC levels were at an imperceptible threshold	Capital Costs Non-Energy O&M Electricity & Gas Productivity cost/Benefit Capital Costs	distance from project site to point of extraction is not analyzed.NotesAdditional technologies would not be required to achieve this credit.Approach does not generate maintenance costs or benefitsAdditional electricity (fan energy) and additional gas (heat loss) usage result from increased ventilation rates, but they are countered with the use of VFD's and Energy Recovery Ventilation. The net impacts are captured in the hypothetical Gold level EAc1 data.Increased ventilation can lead to productivity improvement resulting from increased occupant comfort and wellness. (See section 2.5)NotesCalculated on an SF basis using values from 3rd party literature.Pre-Occupancy air quality management can lead

EQC4.4 – LOW Emitting Materials:	Composite Wood & La	iminates
Approach	Cost/Benefit	Notes
Provided low-VOC products for all composite wood and laminates to	Capital Costs	Calculated as a 5% premium on materials (assumed 60/40 Labour: Material split).
reduce off-gassing and occupant discomfort. Achieved at Silver level	Non-Energy O&M	Water-based adhesives are less robust in nature than solvent based adhesives. Regular repairs of delaminating casework are often required. Calculated on a 5 year repair interval and amortized on a \$/YR basis in model.
	Productivity	Low-VOC products can lead to improved occupant productivity due to fewer adverse reactions to VOCs and other irritants. (See section 2.5).
EQc5 – Indoor Pollutant Control		
Approach	Cost/Benefit	Notes
Installed built-in entrance floor grilles at all entrances to building to capture dirt and particulate entering the building. Achieved at Silver level.	Capital Costs Non-Energy O&M	Calculated as \$120/SF (supply & install) Manufacturer literature suggests entrance grilles can capture of 80% of dirt entering a building. This reduction in dirt suggests a maintenance savings in custodial costs, however, sufficient data is not currently available to quantify this benefit.
	Productivity	Reducing dirt (and dust) entering a building can improve occupant comfort by reducing exposure to irritants and allergens. (See section 2.5)
EQc6.1 – Controllability of System		
Approach	Cost/Benefit	Notes
Not achieved at Silver, but hypothetically achieved at Gold. Project would provide operable	Capital Costs	Calculated as a premium cost for operable windows beyond fixed windows as LEED Silver scenario. No premium for additional lighting controls.
windows around perimeter of		
windows around perimeter of building and individual lighting controls in each space.	Productivity	Allowing users greater control of temperature, ventilation and lighting can increase occupant comfort and enhance productivity. (See section 2.5)
building and individual lighting	Productivity	ventilation and lighting can increase occupant comfort and enhance productivity. (See section
building and individual lighting controls in each space.		ventilation and lighting can increase occupant comfort and enhance productivity. (See section
building and individual lighting controls in each space. EQc8 – Daylighting and Views Approach Provided daylighting to 75% of regular occupied spaces and views to 90% of occupied spaces by locating non-regularly occupied	Cost/Benefit Capital Costs	 ventilation and lighting can increase occupant comfort and enhance productivity. (See section 2.5) Notes Calculated as premium cost for additional glazing along monitor spine and premium cost for light shelves and exterior shading devices. (See Appendix C)
building and individual lighting controls in each space. EQc8 – Daylighting and Views Approach Provided daylighting to 75% of regular occupied spaces and views to 90% of occupied spaces by locating non-regularly occupied spaces in core of building and introducing a glazing monitor as a spine along the centre of the	Cost/Benefit Capital Costs Non-Energy O&M	 ventilation and lighting can increase occupant comfort and enhance productivity. (See section 2.5) Notes Calculated as premium cost for additional glazing along monitor spine and premium cost for light shelves and exterior shading devices. (See Appendix C) Premium for additional window cleaning calculated on an SF basis based on values from 3rd party literature.
building and individual lighting controls in each space. EQc8 – Daylighting and Views Approach Provided daylighting to 75% of regular occupied spaces and views to 90% of occupied spaces by locating non-regularly occupied spaces in core of building and introducing a glazing monitor as a	Cost/Benefit Capital Costs	 ventilation and lighting can increase occupant comfort and enhance productivity. (See section 2.5) Notes Calculated as premium cost for additional glazing along monitor spine and premium cost for light shelves and exterior shading devices. (See Appendix C) Premium for additional window cleaning calculated on an SF basis based on values from

		have a positive impact on building occupant's health and wellness and lead to increased productivity. (See section 2.5)			
IDc1.1 – Green Furniture					
Approach	Cost/Benefit	Notes			
Provided "green furniture" for all	Capital Costs	Client confirmed no cost premium.			
systems furniture and seating.	Productivity	Low-VOC products can lead to improved			
Green furniture requires low or zero		occupant productivity due to fewer adverse			
VOC materials and finishes and		reactions to VOCs and other irritants. (See			
often incorporates recycled content.		section 2.5).			
Achieved at Silver level.					
IDc1.2 (WEc3) – Exceptional Perfo	ormance: Water Use Rec	luction			
Approach	Cost/Benefit	Notes			
Achieved via the cumulative effects	Capital Costs	Captured under WEc2 & WEc3 estimates			
of WEc2 and WEc3 (exceeded 50%	Non-Energy O&M	Captured under WEc2 & WEc3 estimates			
water use reduction compared to	Water Savings	Total savings taken from LEED submittal data			
LEED defined baseline).		and incremental volume (L/YR) calculated as			
		beyond savings generated via WEc2 & WEc3.			
IDc2 – LEED AP					
Approach	Cost/Benefit	Notes			
Engaged the services of a LEED	Consultant Fees	Provided directly by Client			
accredited professional as a key	Cumulative Effects	The advice and expertise of the LEED AP as			
member of the project team.		team member from early in the project in-part,			
		leads to the results realized throughout all of			
		the above credits.			
	Integrated Design	The requirement for all disciplines to			
		collaborate in the design process from the early			
		stages of concept design can encourage greater			
		innovation, and ultimately lead to better			
		performing buildings. available on this effect to			

SUSTAINABLE HOR

SROI

APPENDIX C: COST BREAKDOWNS & CALCULATIONS

The following tables provide transparency into the more complex calculations made to arrive at inputs described within the credit evaluation matrix included in section 2.4 and Appendix B of this report. The proceeding calculations do not encompass all variables for which estimations and calculations were made. Single-step estimation and calculations (IE. 5% premium on composite wood product material costs for EQc4.4) relying on LEED submittal data, 3rd party literature, and standard construction estimation techniques have been omitted from the following in some instances due to their relative simplicity. It should also be considered that varying sources will offer different data on the pricing of construction materials and labour. While valid sources have been leveraged in generating cost estimates, the estimates are considered 'Class D' estimates in nature and may be subject to change in different markets and in different project contexts.

1.1 – Ellerslie Fire Station No. 27

Tree Benefits Cal	culations									
Quantity		Value Range					Be	nefit Value/YR		
76 Trees		High		\$25/t	tree/yr		\$1	,900		
		Mid		\$22/t	22/tree/yr			\$1,672		
		Low		\$19/t	tree/yr		\$1	\$1,444		
Landscaping Cap	ital Costs									
Element Type	Capital	Costs	Area	9	Increment	t Value	Inc	cremental Cost		
Bioswale	\$80,000		215L	F	+600% (pr	emium)	\$6	6,666		
Delete Storm Pipes	s (\$28,75	2)	n/a		n/a		(\$2	28,752)		
O&M Costs	n/a		215L	F	\$0.26/LF		\$5	5.90/Yr		
			r .							
Total Capital Increment				752						
Annual O&M			\$55.	90/Yr						
Storm Retention	Pipes Capit									
System Capacity		Increment Va	alue					cremental Capital Cost		
4,768ga		\$.200/ga					\$9,536			
Storm Flow and	Total Suspe	nded Solids (TSS)							
Volume/Year		TSS Concentr	ration (average) TSS Removed/Year (80% efficacy)							
960,000L/yr		133.5mg/L					10	,252kg/yr		
Waste Water Fix	tures									
Fixture Type	Capital Cost	O&M Cost	_	Q	uantity	Incremental Capi	tal	Incremental O&M		
Waterless Urinal	\$0.00	\$20/yr		2		\$0.00		\$40/yr		
Dual Flush WC	\$140.00	Nil		1		\$280		Nil		
Sensored Lav	\$35.00	\$10/yr		2		\$35		\$20/yr		
Total Capital Increr		\$315.00								
Total O&M Cost pe	er Year	\$60.00								
Water Sovings /Ver	~~			6	wings hove	nd 20%				
Water Savings/Yea 47,937L	11				vings beyo),937L	iiu 50%	_			
Optimize Energy	Performan	ce - Capital (Costs							
Design Element		Increment Va		Q	uantity	O&M Cost	Ca	pital Increment		

SUSTAINABLE RETURN ON INVESTMENT SRC

In-Slab Radiant		\$8/SF	5,	145	Nil		\$41,1	60	
Perimeter Radiation		\$1/SF	17	7,778	Nil		\$17,7	78	
Thermal Insulation (+	·2")	\$2.20/SF	10),200		\$22,440			
VFDs		\$700/HP	12	2	\$393.80	/yr	\$150		
Occupancy Sensors		\$25/Sensor	6						
ERVs	\$1/CFM 1,610 Nil \$1,610						0		
Total Incremental Cap	pital	\$91,538							
Total O&M Cost per Y	' ear	\$393.80							
Optimize Energy Pe	erforman	ce – Energy	Consumptio	on					
Scenario	Т	otal Energy (N	(I)	Electricity	(kWh[e])	Gas (N	(TV	
Reference Building	3	,146,752		1,170,086			1,978,336		
Designed Building	1	,654,126		578,225			1,0693,49		
					908,987				
Difference	1	,492,626		591,861			908,98	37	
Difference Note: Assume silve	er scenari	o would have		1 points (38			gs): N	RCan study on EL	
Note: Assume silve correlations to certific	er scenari cation lev	o would have		1 points (38			gs): N	RCan study on EL	
Note: Assume silve correlations to certific Daylighting and Vie	er scenari cation lev	o would have els & energy p	oints: certifi	points (38 ed = <2, Silv	ver = 2-4,	Gold= 5-7	gs): N 7, Platin	RCan study on EL um = 8-10.	
Note: Assume silve correlations to certific Daylighting and Vie Design Element	er scenari cation lev ews Capital	o would have els & energy p Increment	oints: certifi	points (38 ed = <2, Silv O&M Incr	ement	Gold= 5-7 0&M cos	gs): N 7, Platin	RCan study on EL um = 8-10. Capital Cost	
Note: Assume silve correlations to certific Daylighting and Vie Design Element Punched Windows	er scenari cation lev ews Capital \$600/E	o would have els & energy p Increment	oints: certifi Quantity 20	points (38 ed = <2, Silv	ement	Gold= 5-7 0&M cos \$200	gs): N 7, Platin	RCan study on EL um = 8-10. Capital Cost \$12,000	
Note: Assume silve	er scenari cation lev ews Capital	o would have els & energy p Increment A	oints: certifi	points (38 ed = <2, Silv O&M Incr	ement	Gold= 5-7 0&M cos	gs): N 7, Platin	RCan study on EL um = 8-10. Capital Cost	

Total Incremental Capital	\$48,582
Total O&M Cost per Year	\$440

1.2 – Fort Edmonton Park Administration Building

Heat Island: Roof - Capital Costs												
Design Element	Design Element Increment Value						ity	Ca	apital	al Cost		
Metal Roofing	Aetal Roofing \$26.00/SF							\$2	239,4	00		
Mod-Bit Roofing	Bit Roofing \$17.00/SF							\$:	153,0	00		
Incremental Capita	al	\$8	6,400									
Heat Island: Roo	of — Life	ecycle										
Design Element		Lifecycle		Study Peri	iod	Res	idual Va	alue	Re	placement Capital		
Metal Roofing		50 Years		30 years		\$11	9,700		Ni			
Mod-Bit Roofing		25 Years		30 Years	\$59,184				\$73,980			
Heat Island: Roo	of – O&	kΜ										
Design Element	Annua	al \$/SF	Inter	val \$/SF	Annua	Annual O&M Interval			M&(Total Increment		
Metal Roofing	Nil		Nil		Nil	Nil		Nil		Nil		
Mod-Bit Roofing	\$0.05		\$0.25	5	\$450			\$2,250	\$15,750			
O&M Cost per Yea	r (Total	/study peri	od)	\$525								
Water Use Redu	ction											
Design Element		Capital Co	ost C	D&M Cost	Quan	tity	Increm	nental Capi	ital	Incremental O&M		
Ultra-Low Flow Ur	inal	\$50	٢	Nil	1		\$50			Nil		
Sensored Lav		\$150	ç	510/yr	4		\$400			\$40/yr		

Total Incremental Capital		\$450									
Total O&M Cost per Year		\$40									
Optimize Energy Performance (Silver) – Capital Costs											
Design Element	Inc	rement Value	Quan	ntity	O&M Cost	Capital Cost Increment					
Radiant Heating	\$1/	SF	7,000)	Nil	\$7,000					
VFDs	\$70)0/HP	12.7		\$154/yr	\$8,890					
Occupancy Sensors	\$25	j/sensor	12		Unknown	\$300					
Total Incremental Capital		\$16,190									
Incremental O&M per Year		\$154									
Optimize Energy Perforn	nance	e (Silver) – Energy	/ Usag	е							
Scenario	Tot	al Energy (MJ)		Electricit	ty (kWh[e])	Gas (MJ)					
Reference Building	1,1	98,482		79,542		903,882					
Designed Building	779	9,519		49,373		596,655					
Difference:	418	3,963		30,169		307,227					
Optimize Energy Perforn	nance	e (Hypothetical G	old) –	Capital	Costs						
Added Design Elements	Inc	rement Value		Quantity	y	Capital Cost Increment					
ERVs	\$1/	CFM		6,000		\$6,000					
Thermal Insulation (+2")	\$2.	20/SF	_	6,450		\$14,190					
merman mountation (+2)				Nil		(see M&V breakdown)					
M&V Automation	(se	e M&V breakdown)	Nik v Automation (see Nik v breakdown) Nil (see Mk v breakdown)								
· · ·	(se	e M&V breakdown)									

Optimize Energy Performance (Hypothetical Gold) – Energy Usage											
Performance Level Increment Value M&V Effect Electricity(kWh[e]) Gas (MJ)											
Silver	0%	0%	30,169 (savings)	307,227 (savings)							
Gold	12%	10%	36,686 (savings)	385,895 (savings)							
Difference	12%	10%	6,517	78,758							

Note1: EAc1 uses energy cost as metrics. Project team used "market value" for electricity instead of LEED defaults and achieved 7 points. Energy consumption used as metric instead for fair comparison and number of points adjusted to suit correlative score using default LEED values.

Note 2: Assume Gold scenario would have achieved 6 points (adjusted point value) = 35% vs. 47% saving: NRCan study on EUI correlations to certification levels & energy points: certified = <2, Silver = 2-4, Gold= 5-7, Platinum = 8-10.

Restore Open Space (Hypothetical Gold)										
Site Area(s)	Design Element	Hypothetical Cost	O&M Increment							
50% of site less B.A:	Hydro-seed	\$1,395	Nil							
33,950SF	Habitat Plantings	\$50,246	\$0.0043/SF							
Total Capital Increment	\$48,850									
Total O&M per Year	\$147									
Tree Benefits										
Quantity	Value Range		Benefits/Year							
95 Trees	High	\$25/tree/yr	\$2,375							
	Mid	\$22/tree/yr	\$2,090							
	Low	\$19/tree/yr	\$1,805							
Waste Water Fixtures (Hy	ypothetical Gold)									

SROI SUSTAINABLE HR

Fixture Type	Capital Cost		O&M Cost	Quantity	Incremental Capit	al Incremental O&M			
Waterless Urinals	Nil		\$20/yr	1	Nil	\$20/yr			
Dual Flush WC	\$35		Nil	3	\$105	Nil			
Low-Flow Sink	\$100		\$10/yr	2 \$200		\$20/yr			
		1							
Total Capital Increm	nent	\$305							
Total O&M per Year	r	\$40							
Water Savings/yea	r	I		Savings Be	yond 30%				
71,981L/yr				30,403L/yr					
Measurement &	Verifica	tion (Hy	pothetical Gold)	1					
Design Element		Increm	ent Value	Quantity	C	ost Increment			
DDC Controls		400% C	ontrols Cost	13,500	\$	\$40,500			
Water-Sub Meterin	g	Incl. in I	main meter	n/a	n	/a			
Electric Sub-Meteri	ng	\$705/ea	ach	12	\$	9,000			
Gas Sub-Metering		\$500/in	ch diameter/each	4 \$2,000					
Total Capital Increm	nent	\$51,500)						
Note 1: Measurem				•.					
Note 2: Measurem	ent & Ve	rification	added 10% savings	to O&M ben	efit				

1.3 – South-West Edmonton Police Services

Heat Island: Roof - Capital Costs													
Design Element Incremen					nt ۱	Value		Qua	ntity Capit			al Cost	
Reflective Roofing \$20.36/S						F 16,4			136		\$334,	,611	
Mod-Bit Roofing \$17.00/S					F			16,4	136		\$279,	,412	
Incremental Capital			\$55	,199									
Heat Island: Roof	– Life	cycle											
Design Element		Lifec	ycle			Study Per	iod	R	esidual V	alue	R	lepla	cement Capital
Reflective Roofing		30 Ye	ears			30 years		\$	0		N	lil	
Mod-Bit Roofing		25 Ye	ears			30 Years		\$	\$112,136		\$	\$135,103	
Heat Island: Roof	- 0&	M											
Design Element	Annı	ual \$/SF		Inte	rva	al \$/SF	Annu	ual O&M Interva			0& №	1	Total Increment
Reflective Roof	\$0.04	4		Nil			\$685	85		Nil			\$137
Mod-Bit Roofing	\$0.0	5		\$0.2	25		\$822			\$4,109			\$11,642
O&M Cost per Year ((Total/	/study p	eriod)	\$3	388							
Heat Island: Roof	– Ene	ergy											
			1	Refer	en	ce Study				Edmo	nton	DHD	& DCD
Roof Type	5	Summer	(kWI	h)		Winter (k	Wh[e])	Adjust	ed Summ	er	Ad	justed Winter
Black (1000m2)	1	L,488				21,223			225			32	,896

	-		1								
White (1000m2)	657		21,802			110			33,793		
Difference	831		(579)			1	116		(897)		
Adjusted Savings/(Per				,436	,						
Waste Water Fixtur			l Gold) & Wa	ter l	Jse Reduc	-					
Fixture type	Capital	Cost	O&M Cost		Quantity		Capital Increme	nt	O&M Increment		
Waterless urinal	Nil		\$20/yr		11		Nil		\$220/yr		
Ultra Low Flow WC	\$35		Nil		23	\$805		Nil			
Rainwater harvesting \$59,00		0 Unknown			1	\$59,000		Unknown			
Total incremental Cap	oital	\$59,805									
Total incremental O&	M Costs/y	yr \$220									
Water Savings/yr (total)		Rain Water Harvesti		ng	Beyond 20% (WE		3)	Beyond 30% (WEc2)			
4,471,614L		1,264,725L			:	804,891L			498,225L		
Optimize Energy (Si	ilver) – Ca	apital C	osts								
Design Element		Increment Value		Qu	Quantity		O&M Cost		Capital Cost Increment		
Condensing Boilers		\$2500/MMBtu				Unknown		\$11,000			
VFDs		\$700/HP		61.5		\$1,320/yr		\$43,050			
Occupancy Sensors		\$25/Sensor		67			Unknown		\$1,675		
Heat Recovery Wheel		\$1.25/CFM			900 N			\$11,125			
Thermal Insulation (+2		\$2.20				Nil			\$48,070		
						1 -7-	-				
Total Incremental Cap	oital		\$114,920								
Total Incremental O&		\$1,320									
Optimize Energy (Si		nergy U									
Scenario			ergy (MJ)		Electricit	v (k	wh[e])	Gas	(MI)		
Reference Building		11,775,882			1,668,995			5,767,500			
Designed Building		7,656,619			1,085,172		3,750,000				
Difference:		4,119,263			583,823		2,017,500				
Optimize Energy (H				nsts	303,023			-,01	,,500		
Added Design Elemen			-	5365	Quantity	,		Canit	tal Cost Increment		
LED Lighting		Increment Value \$25/Fixture			573			\$14,3			
Triple Glazed Windows		120% of window cost			\$1,100,000			\$220,000			
Daylight Dimming		\$200/Sensor			67			\$13,400			
Super Insulation (+3" total		\$3.50/SF			21,850				\$48,070		
of +5" beyond status		JJJJJJJJJJJJJ			21,000						
	440/							1			
Total Hypothetical Inc	rement		\$295,795			_					
Optimize Energy (H		cal Gol		age							
Performance Level				Juge	Electricit	v (k	Wh[e])	Gas	(MI)		
		Increment value			583,823 (sa				Gas (MJ) 2,017,500 (savings)		
Gold		13%			800,792 (savir			2,767,275 (savings)			
Difference:		13%			216,969			749,775			
Note 1: Assume Gold scenario			d have achiev	od 0	-						
					-			-			
correlations to certification levels & energy points: certified = <2, Silver = 2-4, Gold= 5-7, Platinum = 8-10.											
Daylighting and Vie	ws										
Design Element	Capital Co	ost	O&M Cost		Quantity	′	Incremental Capital	tal Incremental O&M			
Monitor Spine	\$27/SF		\$4/pane		890		\$24,030		\$368		
Monitor spine	721/35		24/ parte		890		724,030		٥٥ <u></u>		

Sunshades/Shelves	\$40/SF	Nil	2950	\$118,000	Nil		
Sunshaues/Sherves	<u> </u>		2550	\$110,000			
Total Capital Increme	nt	\$142,030					
Total O&M Cost per Year		\$368					
Restore Open Space		Gold) – Area An	alvsis				
Area Type			Area Size (SF	F)			
50% of Site less Buildi	ng Area (require	d)	109,600	•			
Parking Lot			130,680				
Turf Grass							
Habitat							
Additional Habitat Ne	eeded						
Restore Open Space	e (Hypothetica	l Gold) – Reimagi	ined Site Plan				
Intervention		Area (SF)		Capital	Capital Cost		
Eliminate Visitor Parl	•	12,905		(\$256,0	(\$256,000)		
street parking access							
Replace Turf w/ Plant		9,475		. ,	\$2,337		
Replace West patio w	-	1,580			(\$1,144)		
Green Roof at Sout	hern 1 storey	12,378		\$309,45	\$309,450		
block of building							
-							
Total additional habit			36,338				
Total Incremental Cap	bital	\$54,642					
Tree Benefits							
Quantity		Value Range			Benefits/Year		
195		Low	\$19	\$3,705			
		Mid	\$22 \$4,2				
Storm Water Management (Hypo		High	\$25 \$4875				
	<u> </u>						
Scenario	Capital C		Quantity		Incremental Capital		
Pervious concrete	\$2.71/SF	27,320 based SWM captured under Restore Open			\$74,175		
	· · · ·			· · ·	e calculations above.		
Storm Water Mana		<mark>.</mark>					
Site Feature	Volume/		TSS Concent	ration	TSS Removed/Year		
Existing Infiltration 930,000 New Swales 382,200			133.5mg/L		19,224kg/yr		
,							
			66.75mg/L		6,753kg/yr		
Rainwater harvesting	1,204,72	JL	00.75mg/L		0,735Kg/yi		

APPENDIX D: STRUCTURE & LOGIC DIAGRAMS

The methodology for the various benefits and costs is presented graphically in the form of a flow chart called a "structure and logic model" (S&L). Such models provide a graphical illustration of how the various inputs combine to determine the benefit or cost evaluated. They are intended to provide a transparent record of how each benefit and cost is calculated.

The diagram on the following page identifies the methodological format of the analysis. The analysis starts at Level 1 with a detailed description of the design alternative. Level 2 identifies the incremental credits between LEED[™] certification versus following the same approach only without registering and certifying. The third level involves an explicit calculation of the impacts associated with each credit, while the fourth level monetizes (converts to monetary terms) those incremental impacts. This analysis requires a series of exercises generated by an array of inputs that often carry a high degree of uncertainty. Each of these inputs is assessed by the model at Level 6 to get the overall probability distribution of the net benefit of the alternative. Once the incremental costs for each alternative have been determined they are weighed against the monetized incremental benefit to obtain the NPV of the cost-benefit analysis at Level 7.

The methodology for the S&L diagrams follows as the inputs to the calculations shown are reflected as squares/rectangles, while outputs of calculations are reflected as ovals.

Figure 1: FROI & SROI High Level Structure and Logic Model

Structure and Logic models at the incremental credit levels are presented below. While the first credit listed below, EA1, includes some dialog on how to interpret the diagram, the remaining credits do not have an accompanying write-up for sake of preventing any repetition.

Figure 2. FROI Credit Level – Optimize Energy Performance (EA1)

From a purely financial perspective, this credit generates two benefits relating to the reduced cost of natural gas and electricity, and costs which are related to the additional up-front capital costs for the equipment, as well as any additional operating & maintenance (O&M) costs. To further illustrate, the benefit of 'Reduced Natural Gas Costs', shown in the circle on the lower left of the diagram, is a function of the reduction in natural gas consumption multiplied by the natural gas utility rate.

Figure 3. SROI Credit Level – Optimize Energy Performance (EA1)

Adding the monetized social and environmental impacts to the financial impacts listed above provides the SROI perspective. In this credit, as there are natural gas and electricity savings, the emissions reductions (both greenhouse gases (GHG) and criteria air contaminants (CAC)) must be incorporated and valued as shown below. For example, electricity savings are valued as a reduction in emissions from the Alberta grid as a function of the amount of electricity saved, multiplied by the value of those emissions.

Figure 4. FROI Credit Level – Best Practice Commissioning (EA 3)

Figure 5. SROI Credit Level – Best Practice Commissioning (EA 3)

Figure 6. FROI Credit Level – Measurement & Verification (EA 5)

Figure 7. SROI Credit Level – Measurement & Verification (EA 5)

Figure 8. FROI Credit Level – Alternative Transport: Parking Capacity (SS 4.4)

Figure 9. SROI Credit Level – Alternative Transport: Parking Capacity (SS 4.4)

Figure 10. FROI Credit Level – Protect/Restore Open Spaces (SS 5)

Figure 11. SROI Credit Level – Protect/Restore Open Spaces (SS 5)

Figure 12. FROI Credit Level – Stormwater Management: Rate & Treatment (SS 6.1 & SS 6.2 Combined)

Figure 13. SROI Credit Level – Stormwater Management: Rate & Treatment (SS 6.1 & SS 6.2 Combined)
Benefits

Figure 14. FROI Credit Level – Heat Island Effect, Roof (SS 7.2)

Figure 15. SROI Credit Level – Heat Island Effect, Roof (SS 7.2)

Figure 16. FROI Credit Level – Water Use Reduction (WE 2 & 3.1)

Figure 17. SROI Credit Level – Water Use Reduction (WE 2 & 3.1)

Figure 18. FROI Credit Level – Regional Materials (MR 5)

Figure 19. SROI Credit Level – Regional Materials (MR 5)

Figure 20. FROI Credit Level – Certified Wood (MR 7)

Figure 21. SROI Credit Level – Certified Wood (MR 7)

Figure 22. FROI Credit Level – Reduced Toxins/Irritants (IEQ 3.2, 4.4, & 5)

Figure 23. SROI Credit Level – Reduced Toxins/Irritants (IEQ 3.2, 4.4, & 5)

Figure 24. FROI Credit Level – Enhanced Comfort Control (IEQ 6.1, 6.2, 8.1, & 8.2)

Figure 25. SROI Credit Level – Enhanced Comfort Control (IEQ 6.1, 6.2, 8.1, & 8.2)

Figure 26. FROI Credit Level – Reductions in Communicable Diseases (IEQ 1 & 2)

APPENDIX E: OVERVIEW OF SUSTAINABLE RETURN ON INVESTMENT (SROI)

Issues related to sustainability, sustainable communities, and sustainable development is at the forefront of social debate today. Sustainable development is typically defined as the pattern of development that "meets the needs of the present without compromising the ability of future generations to meet their own needs" (World Commission on Environment and Development, Brundtland Commission, 1987). Sustainable development combines the financial considerations of development with broader socio-economic concerns including environmental stewardship, human health and equity issues, social well-being, and the social implications of decisions.

While the importance of these issues is widely recognized, organizations are challenged when they try to integrate sustainability considerations into their investment and operating decisions. Traditional financial evaluation tools used to assess an investment project, such as Business Case Analysis or Life-Cycle Cost Analysis (LCCA), rely exclusively on financial impacts. These traditional tools have two primary drawbacks:

- 1. An inability to accurately quantify the non-cash benefits and costs accruing to both the organization in question and to society as a whole resulting from a specific investment (sustainable benefits and costs).
- 2. A failure to adequately incorporate the element of risk and uncertainty.

HDR's Sustainable Return on Investment (SROI) process is a broad-based analysis that helps overcome these drawbacks by accounting for a project's triple-bottom line – its full range of financial, economic, as well as social and environmental impacts.

The SROI process builds on best practices in Cost-Benefit Analysis and Financial Analysis methodologies, complemented by Risk Analysis and Stakeholder Elicitation techniques. The SROI process identifies the significant impacts of a given investment, and makes every attempt to credibly value them in monetary terms. Any relevant impacts that cannot be monetized are also identified, and ideally quantified in some way. Results are presented in innovative ways that help clients and their stakeholders prioritize

projects, better understand trade-offs, and evaluate risk.

A key feature of SROI is that it converts to dollar terms (monetizes) the relevant social and environmental impacts of a project yet still provides the equivalent of traditional financial metrics (referred to as "Financial Return on Investment (FROI)"). FROI accounts for internal (i.e., accruing to the organization) cash costs and benefits only, while SROI accounts for all internal and external costs and benefit. The diagram below illustrates how traditional financial models differ from SROI.

Figure A-2: Comparison of SROI to Traditional Life-Cycle Costing

The SROI process includes the traditional financial impacts, such as savings on utility bills or reduced/ higher O&M costs, internal productivity effects and a range of social and environmental impacts that would result directly from the evaluated project. Examples include:

- Value of enhanced productivity from employees working in a green building (e.g., fewer sick days or performing a task more efficiently);
- Quantified and monetized value of reduction in environmental emissions;
- Quantified and monetized value of reduction in generation of waste ;
- Value of time savings and costs resulting from the evaluated project; and,
- Value of quality of life improvements, including improvements to households and broader community.

The SROI process involves four steps:

- 1. Development of the structure and logic of costs and benefits over the project life cycle. This involves determining the costs and benefits that result from the proposed investment and a graphical depiction to quantify these values. In particular, this step focuses on quantification of all broad (financial and sustainable) costs and benefits.
- 2. Quantification of input assumptions and assignment of risk/uncertainty, or initial risk analysis. This step involves building the preliminary outline of the SROI model, populating the model with

initial data assumptions and performing initial calculations for identified costs and benefits (financial, social and environmental).

- 3. Facilitation of a Risk Analysis Process (RAP) session. This is a meeting, similar to a one-day charrette, which brings together key stakeholders to reach consensus on input data values and calculations to be used in the model.¹³
- 4. Simulation of outcomes and probabilistic analysis. The final step in the process is the generation of SROI metrics, including Net Present Value (NPV), Discounted Payback Period, Benefit-Cost Ratio and the Internal Rate of Return, in addition to the traditional financial metrics. Financial metrics are included as a point of comparison and to transparently and comprehensively illustrate the relative merits of all potential investment scenarios being analyzed.

Each of the above steps is discussed in detail below.

Step 1: Structure and Logic of the Cost and Benefits

A "structure and logic model" depicts the variables and cause and effect relationships that underpin the forecasting problem at-hand. The structure and logic model is written mathematically to facilitate analysis and also depicted diagrammatically to permit stakeholder scrutiny and modification during Step 3.

Step 2: Central Estimates and Probability Analysis

Traditional financial analysis takes the form of a single "expected outcome" supplemented with alternative scenarios. The limitation of a forecast with a single expected outcome is clear – while it may provide the single best statistical estimate, it offers no information about the range of other possible outcomes and their associated probabilities. The problem becomes acute when uncertainties surrounding the underlying assumptions of a forecast are material.

Another common approach to provide added perspective on reality is "sensitivity analysis." Key forecast assumptions are varied one at a time, in order, to assess their relative impact on the expected outcome. A concern with this approach is that assumptions are often varied by arbitrary amounts. A more serious concern with this approach is that, in the real world, assumptions do not veer from actual outcomes one at a time but rather the impact of simultaneous differences between assumptions and actual outcomes is needed to provide a realistic perspective on the riskiness of a forecast.

Risk analysis provides a way around the problems outlined above. It helps avoid the lack of perspective in "high" and "low" cases by measuring the probability or "odds" that an outcome will actually materialize. A risk-based approach allows all inputs to be varied simultaneously within their distributions, avoiding the problems inherent in conventional sensitivity analysis. Risk analysis also recognizes interrelationships between variables and their associated probability distributions.

Risk analysis and probabilistic simulation techniques can be used to account for uncertainty in both the input values and model parameters. All projections and input values are expressed as probability distributions (a range of possible outcomes and the probability of each outcome), with a wider range of

ROI SUSTAINABLE

values provided for inputs exhibiting a greater degree of uncertainty. Of note, each element is converted into monetary values to estimate overall impacts in comparable financial terms and discounted to translate all values into present-value terms. Specifying uncertainty ranges for key parameters entering the decision calculus allows the SROI framework to evaluate the full array of social costs and benefits of a project while illustrating the range of possible outcomes to inform decision-makers.

Each variable is assigned a central estimate and a range to represent the degree of uncertainty. Estimates are recorded on Excel-based data sheets. The first column gives an initial median. The second and third columns define an uncertainty range representing a 90 percent confidence interval—the range within which there exists a 90 percent probability of finding the actual outcome. The greater the uncertainty associated with a forecast variable the wider the range.

Data Input	Median	Low	High	Realized
Percent reduction in electricity use	30.0%	22.5%	37.5%	30.0%
Building sqft	252,752	252,752	252,752	\$ 252,752
Cost of electricity per kWh	\$ 0.100	\$ 0.050	\$ 0.250	\$ 0.117
Electricity use in kWh per sqft/year	49.33	39.46	59.19	49.33

Figure A- 3: Example of Data Input Sheet (Illustrative Example)

Probability ranges are established using both statistical analysis and subjective probability assessment. Probability ranges do not have to be normal or symmetrical. In other words, there is no need to assume a bell-shaped normal probability curve. The bell curve assumes an equal likelihood of being too low and too high in forecasting a particular value. For example, if projected unit construction costs deviate from expectations, it is more likely that the costs will be higher than the median expected outcome than lower.

The Excel-based risk analysis add-on tool @Risk transforms the ranges depicted in the table above into formal probability distributions (or "probability density functions"), helping stakeholders understand and participate in the process even without formal training in statistical analysis.

The central estimates and probability ranges for each assumption in the forecasting structure and logic framework come from one of three key sources, as described below:

- The best available third party information from a variety of sources, including the Environmental Protection Agency, the Department of Energy, the Federal Highway Administration, the Bureau of Labor Statistics, other government agencies, financial markets, universities, think tanks, etc.
- Historical analysis of statistical uncertainty in relevant time series data and an error analysis of
 forecasting "coefficients," which are numbers that represent the measured impact of one variable
 (say, fuel prices) on another (such as the price of steel). While these coefficients can only be known
 with uncertainty, statistical methods help uncover the level of uncertainty (using diagnostic statistics
 such as standard deviation, confidence intervals, and so on). This is also referred to as "frequentist"
 probability.
- Subjective probability assessment (also called "Bayesian" statistics, for the mathematician who developed it) in which a frequentist probability represents the measured frequency with which different outcomes occur (i.e., the number of heads and tails after thousands of tosses). The Bayesian probability of an event occurring is the degree of belief held by an informed person or group that it

will occur. Obtaining subjective probabilities is the subject of Step 3.

Step 3: Expert Evaluation: The RAP[©] Session

The third step in the SROI process involves the formation of an expert panel to hold a charette-like one or two day meeting that we call the Risk Analysis Process (RAP) session. We use facilitation techniques to elicit risk and probability beliefs from participants about:

- ١. The structure of the forecasting framework
- Π. Uncertainty attached to each input variable and forecasting coefficient in the framework

In (i), experts are invited to add variables and hypothesized causal relationships that may be material, yet missing from the model. In (ii), the initial central estimates and ranges that were provided to panelists prior to the session are modified based on subjective expert beliefs and discussion.

Examples of typical RAP session participants include:

Client

- HDR
- Project tam
- Facilitator Economists

- **Outside Experts**
- Public Agencies and Officials
- **Business Groups**

- **Technical specialists**
 - **Financial experts**
- **Technical Specialists**

Step 4: Simulation of Outcomes and Probabilistic Analysis

In step four, final probability distributions are formulated by the risk analyst (Economist) and represent a combination of probability information drawn from Steps 2 and 3. These are combined using simulation techniques (called Monte Carlo analysis) that allow each variable and forecasting coefficient to vary simultaneously according to its associated probability distribution (see Fig A-4 for a graphical representation of this process).

Figure A- 4: Combining Probability Distributions (Illustrative Example)

result of the analysis is a forecast that includes estimates of the probability of achieving alternative outcomes given the uncertainty in underlying variables and coefficients.

For example, probability distribution of NPV of a project is demonstrated in Figures A-5 and A-6. As the figure and the table show, the average expected outcome of the hypothetical project is an NPV of \$392.41 over the period of analysis considered. There is a 10% chance that the NPV will exceed \$580.11, and a 1% chance that the NPV will exceed \$751.29. However, the proposed project also has a downside and a non-zero probability of performing at a much lower magnitude of NPV than the average outcome. Specifically, as the table shows there is a 99% probability that the NPV will exceed the negative \$36.29. This implies that there is a risk (about 1% to 2% in this case) that the NPV of the project considered would fall below zero, or generate no net benefits. Examining the table further, one can also determine that there is a risk of underperformance of the project, or the situations when the project generates net benefits that are much lower than the mean expected outcome.

Figure A- 6: Risk Analysis of Net Present Value of a Project (*Illustrative Example*)

Project Net present Value	Probability of Exceeding
(\$ M)	Value Shown at Left
-\$36.29	0.99
\$128.11	0.95
\$ 200.01	0.90
\$275.91	0.80
\$325.05	0.70
\$364.50	0.60
\$ 400.05	0.50
\$434.81	0.40
\$471.95	0.30
\$516.08	0.20
\$ 580.11	0.10
\$636.22	0.05
\$751.29	0.01
\$ 392.41	Mean Expected Outcome

Using the SROI process, the net present value of a project (as in the example above) and other 120

evaluation metrics can be estimated taking into account the three types if impacts discussed earlier: (1) only project cash impacts, (2) project cash impacts and non-cash impacts internal to the organization, and (3) all comprehensive societal or sustainable impacts. This allows decision-makers the ability to prioritize worthy—but competing—projects for funding based on the maximum financial and societal returns. In the following example, a project's outcome metrics are synthesized into an intuitive risk analysis model based on estimated return on investment.

- A. Compare the financial return on investment and sustainable return on investment. In this example, the mean sustainable return on investment is more than double the traditional return on investment.
- B. Evaluate non-cash benefits, such as improvements in employee health and productivity, and the benefits to larger community.
- C. Assess the statistical likelihood that return will fall within an 80% confidence interval. In this example, sustainable return on investment ranges from 15% to 34%.

Figure A- 7: The Sustainability "S" Curve to Optimize the Total Value of Your Projects

Basic Financial Return on Investment

Cash Plus Non-Cash Benefits Realized by an Organization Sustainable Return on Investment

APPENDIX F: GLOSSARY OF TERMS

Discounted Value: The discounted value is the present value of a future cash amount. The present value is determined by reducing its future value by the appropriate discount rate (interest rate used in determining the present value of future cash flows) for each unit of time between the times when the cash flow is to be valued to the time of the cash flow. To calculate the present value of a single cash flow, it is divided by one plus the interest rate (discount rate) for each period of time that will pass. This is expressed mathematically as raising the divisor to the power of the number of units of time.

Net Present Value (NPV): The net value that an investment or project adds to the value of the organization, calculated as the sum of the present value of future cash flows less the present value of the project's costs.

Discounted Payback Period (DPP): The period of time required for the return on an investment to recover the sum of the original investment on a discounted cash flow basis.

Benefit To Cost Ratio (BCR): The overall "value for money" of a project, expressed as the ratio of the benefits of a project relative to its costs, with both expressed in present-value monetary terms.

Sustainable Return on Investment (SROI): SROI is an enhanced form of Cost-Benefit Analysis (CBA) - it provides a triple-bottom line view of a project's economic results and goes even further by incorporating state-of-the-art risk analysis. SROI monetizes (converts to monetary terms) all relevant social and environmental impacts related to a given project, and provides the equivalent of traditional financial metrics.

Greenhouse Gases: A greenhouse gas (abbreviated GHG) is a gas in an atmosphere that absorbs and emits radiation within the thermal infrared range. This process is the fundamental cause of the greenhouse effect. The primary greenhouse gases in the Earth's atmosphere are water vapour, carbon dioxide, methane, nitrous oxide, and ozone. SROI monetizes carbon dioxide, methane, and nitrous oxide.

Criteria Air Contaminants: Criteria air contaminants (abbreviated CAC) are a set of air pollutants that cause smog, acid rain and other health hazards. CACs are typically emitted from many sources in industry, mining, transportation, electricity generation and agriculture. In most cases they are the products of the combustion of fossil fuels or industrial processes. The basis for monetizing the social impacts of criteria air contaminants was to primarily use the results from three reputable studies by the U.S. Department of Transportation, the European Commission, and Yale University. The main criteria air contaminants analyzed were Nitrogen Oxide (NOx), Volatile Organic Compounds (VOCs), Particulate Matter (PM), and Sulfur Dioxide (SO2). The latter two were further split and categorized into Rural, Urban, and Dense Urban.

Carbon Dioxide (C02): Carbon dioxide is a heavy colorless gas that does not support combustion and is absorbed from the air by plans in photosynthesis. Industrial carbon dioxide is produced mainly from six processes: Directly from natural carbon dioxide springs, where it is produced by the action of acidified water on limestone or dolomite; As a by-product of hydrogen production plants, where methane is converted to CO2; From combustion of fossil fuels and wood; As a by-product of

fermentation of sugar in the brewing of beer, whisky and other alcoholic beverages; From thermal decomposition of limestone, CaCO3, in the manufacture of lime, CaO.

Nitrogen Oxides (NOx): Nitrogen oxides include a number of gases that are composed of oxygen and nitrogen. In the presence of sunlight these substances can transform into acidic air pollutants such as nitrate particles. The nitrogen oxides family of gases can be transported long distances in our atmosphere. Nitrogen oxides play a key role in the formation of smog (ground-level ozone). At elevated levels, NOx can impair lung function, irritate the respiratory system and, at very high levels, make breathing difficult, especially for people who already suffer form asthma or bronchitis.

Particulate Matter (PM): Particulate matter refers to tiny particles of solid or liquid suspended in a gas. Sources of particulate matter can be man made or natural. Some particulates occur naturally, originating from volcanoes, dust storms, forest and grassland fires, living vegetation, and sea spray. Human activities, such as the burning of fossil fuels in vehicles, power plants and various industrial processes also generate significant amounts of aerosols.

Volatile Organic Compound (VOC): Volatile organic compounds (VOCs) are a large and diverse family of chemicals that contain carbon and hydrogen. They can be emitted into indoor air from a variety of sources including cigarette smoke, household products like air fresheners, furnishings, vehicle exhaust and building materials such as paint, varnish and glues. Examples of VOCs are aldehydes, ketones, and hydrocarbons.

www.hdrinc.com

MISSION

To be a superior professional firm known for vision, value, and service to our clients, our communities and our employees.