Phase II Environmental Site Assessment Rossdal e Lands 9469 Rossdal e Road NW & 10155 - 96th Avenue NW BI ock OT; PI an NB Edmonton, AI berta

Prepared for:

The City of Edmonton Edmonton, Al berta

Prepared by:

Nichol s Environmental (Canada) Ltd. Edmonton, Al berta

Nichol s Fil e: 14-214-CRD

Date Issued: February 10, 2015

Nichols Environmental (Canada) Ltd.

Head Office: 17331 - 107th Avenue Edmonton, Alberta T5S 1E5

nicholsenvironmental.com

P: 780 484 3377 F: 780 484 5093

Fhe City of Edmonton Phase II ESA: Rossdal e Lands 31 ock OT; PI an NB Edmonton, AI berta The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page i of 47

EXECUTIVE SUMMARY

Nichols Environmental has completed a Phase II Environmental Site Assessment (ESA) for the Property located at 9469 Rossdale Road NW & 10155 - 96th Avenue NW in Edmonton, Alberta. The Property has history dating back to 1802 and has encompassed a number of developments throughout the years. The Phase II ESA was initiated to provide further assessment of seven areas of concerns on the Property related to historical activities.

Area 1 - Mercury: Natural Gas Metering Station

Previous assessment work within this area had identified mercury-impacted soils, which were subsequently remediated in 1998. However, closure sampling of this excavation was done via composite samples, which identified elevated mercury concentrations. This subsequently raised the concern that a sub-sample component of the composite may not meet the current 2014 Alberta Tier 1 Guidelines for mercury.

In November 2014, three boreholes (one of which was completed as a groundwater monitoring well) were advanced within/surrounding the former excavation in order to assess current conditions with respect to mercury. Based on the results of the investigation, there do not appear to be any residual mercury impacts present within the soil or groundwater at the locations tested. Concentrations of boron were identified above the guideline in two samples from a silt material, but are not anticipated to pose a risk and could be addressed through a risk assessment and subsequently risk-managed. No other metals parameter concentrations exceeded the guidelines within the locations tested in Area 1. As such, Nichols Environmental has no further recommendations for assessment with regards to mercury for Area 1 at this time.

Area 2 - Creosote: Former Reactivator

An anticipated 514 30-foot long (approximately 9 m) creosote-treated piles are present on the northeast portion of the Property in the location of two former reactivators. Previous investigations conducted from 2004 to 2008 identified trace concentrations of creosote-related polycyclic aromatic hydrocarbons (PAHs), including fluoranthene in the soil, and dibenzofuran and pentachlorophenol (PCP) in groundwater. A letter from Alberta Environment and Sustainable Resource Development (AESRD) in 2004 to EPCOR Water Services indicates that leaving the creosote-treated piles in place beneath the former reactivators was acceptable as long as the site remained undisturbed.

At the time of assessment, three of the seven original monitoring wells remained present in Area 2. Nichols Environmental conducted monitoring and sampling of the wells in November 2014, for which all PAH and dibenzofuran parameters, as well as PCP, were below their respective laboratory method detection limits (MDLs) or guidelines (where applicable). However, there were detectable

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page ii of 47

concentrations of select dioxin parameters identified in one monitoring well, and select dibenzofuran parameters were identified in two monitoring wells.

Based on the results of the investigation, there do not appear to be any residual PAH impacts (above guidelines) present within the groundwater at the locations tested. Nichols Environmental has no further recommendations for assessment with regards to the creosote-treated piles within the former reactivator site in Area 2 at this time and as long as the site remains undisturbed. Further assessment may be required in the event of development of this area, as there is documentation that indicates there are PAH-impacted soils present in this area.

Area 3 - PAHs, Hydrocarbons & Metals: Former Burn Pit

This portion of the Property was formerly utilized by Fire Services, which including a fire training area (former burn pit) to the south of the current Watermark Building. In the early 2000s, a number of investigations were initiated to assess potential impacts from historical use, which confirmed impacts at 2.6 metres below grade (mbg) south of the Watermark Building and at 7.6 mbg further to the south of this location. The two areas are believed to be two separate plumes and are associated with historical fire burning.

In October 2014, six boreholes (one of which was completed as a groundwater monitoring well) were advanced to the south of the Watermark Building in order to delineate the previously identified hydrocarbon, metals, and PAH-impacted soils. Hydrocarbon odours were noted in three of the boreholes advanced, primarily within clay/sand fill or silt materials at depths ranging from surface to approximately 4.7 mbg.

Based on the results of the investigation, PAH and petroleum hydrocarbon-impacted soils appear to extend to a confirmed depth of at least 4.5 mbg within the northern contaminant plume, and may extend up to 6.1 mbg based on field observations. Lead-impacted soil was also identified within the northern contaminant plume. The estimated area of impact for the northern plume is approximately 560 m². However, closure has not been achieved to the west due to the presence of a utility corridor. The north and south hydrocarbon contaminant plumes do not appear to be connected, as observations and analytical results from two of the boreholes advanced to the south of the contaminant plume did not indicate the presence of petroleum hydrocarbons. However, PAH-impacted fill materials were noted, and based on a review of previous borehole logs, similar fill materials may be present further south toward the walking trail that borders this area. The highest concentrations of PAHs were identified within the northern contaminant plume, along with notable concentrations of lead, and are likely related to the former burning activities.

In November 2014 all accessible monitoring wells within Area 3 were monitored (six total), only one of which contained enough water for sampling. No non-aqueous phase liquids (NAPL) were identified in either of the two monitoring wells at the time of monitoring and all PAH and petroleum

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page iii of 47

hydrocarbon parameter concentrations were below guidelines (where applicable). Only concentrations of manganese, zinc, and chloride were identified above guidelines in the newly installed groundwater monitoring well and TDS in the previously existing monitoring well. These identified parameters are not anticipated to be indicative of impacts arising from anthropogenic sources.

The petroleum hydrocarbon parameters identified during this assessment within the northern contaminant plume are present in concentrations that would exceed guidelines protective of the domestic use aquifer (DUA), freshwater aquatic life (FWAL) receptors, vapour inhalation, and/or management limits. Taking this into consideration, remediation of these identified petroleum hydrocarbon impacts in the northern plume would be recommended. In the interim, a soil management plan should also be considered for any activities that may require ground disturbance in this area, to ensure that the soils are appropriately managed and measures are in place to protect workers.

During the course of the assessment, further documentation regarding potential petroleum hydrocarbon impacts to the west of the northern contaminant plume was also identified, from approximately 1.8 to 4.0 mbg based on field observations. No previous drilling has been conducted within this area. The source of this contamination is unknown at this time, and it is unknown if the identified impacts are related and/or connected to the existing plumes. As such, consideration should also be given to further investigative drilling in the southwest and southeast corners of this area.

With regards to the identified PAHs, the impacts appear to be widespread through fill materials within this area and would primarily pose a risk to FWAL receptors. The elevated PAHs identified near surface in association with the hydrocarbon impacts in the northern plume are likely related to former burn activities, and remediation of this area is recommended. The PAHs within the northern plume identified at depth may require risk assessment. Due to the widespread nature of the remaining fill materials beyond the northern plume, consideration could be given to conducting a risk assessment to determine what level of risk the PAHs pose to the applicable receptors, should the soils remain in place.

Area 4 - TCE: Former Hazardous Materials Storage

An investigation conducted in 2010 by Thurber Engineering Ltd. (Thurber) identified trichloroethene (TCE) concentrations above the guidelines at approximately 0 to 0.2 mbg within a fine-grained fill material in the former hazardous material storage area south of the former carpenters shop on the Property. Further test pitting and soil analysis were conducted in this area in 2013 in lieu of construction of a new building. Samples were submitted from three test pits in the vicinity of the identified TCE at approximately 0.1 mbg for testing of volatile organic compounds (VOCs), which did not identify any parameter concentrations above the guidelines.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page iv of 47

However, the test pitting program confirmed that disturbed soils within this area were impacted with PAHs, metals, or petroleum hydrocarbons (one test pit). Based on the result of the assessments completed, Thurber concluded that the materials required for removal for construction of the new building would require disposal through a Class II Landfill and that measures would be required to help manage potential vapour migration and/or recontamination from the surrounding soils.

Due to construction activities, Nichols Environmental was not able to conduct further assessment of this area. In discussion with EPCOR, no further documentation was identified documenting disposal of the soils, confirmation testing following removal of the soils, or any mitigation measures. Given the nature of TCE, and that soils from below 0.2 mbg were not tested within this area for TCE, delineation may not have been achieved. EPCOR should be contacted to confirm the management strategy that was in place to address the impacted soils within this area during construction activities, and any mitigation that was put in place.

Area 5 - PAHs & Metals Across Site

A number of previous investigations conducted across the Property have identified impacted fill materials ranging from surface to 3.8 mbg or greater for metals and from surface to 2.9 mbg for PAHs. However, one area was confirmed to have PAH-impacted soil at approximately 7.6 mbg in the vicinity of the Watermark Building, which is likely associated with historical burn training. In October 2014, four boreholes (including two monitoring wells) were advanced on northern portions of the Property in order to establish background comparison locations as well as to assess the extent of fill materials.

Up to four additional drilling locations had also been proposed throughout the Property to confirm the presence of fill materials. However, based on potential utility conflicts or construction within these areas and documentation identified through the course of the assessment which confirmed the presence of fill materials, these locations were not completed. It should be noted that the proposed location to the west of the power plant may require assessment at a time that the area is not under construction.

Fill materials were identified at other drilling locations advanced on the Property during the course of the Phase II ESA. These included materials in Area 3, where a clay, silt, and/or sand mix of fill materials was identified to a maximum depth of 5.7 mbg, and Area 6 where debris was also encountered in three of the four boreholes at depths ranging from approximately 1.3 to 4.6 mbg. Anthracene concentrations above guidelines were also identified at approximately 1.0 mbg within a silt material identified in one of the boreholes in Area 1, but were delineated at approximately 1.5 mbg.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page v of 47

In November 2014 the two background monitoring wells were monitored and one of the two sampled. Concentrations of manganese were identified above guidelines in the background monitoring well and all other PAH and routine parameter concentrations were below their respective guidelines, where applicable.

Based on the results of the investigation, fill materials do not appear to be widespread into the northern portions of the Property where drilling was conducted. However, it appears to be widespread to variable depths on the southern portion of the Property in association with the water treatment plant and power plant infrastructure. Given the coverage of the potential fill materials on the Property, traditional remediation methods such as excavation would not be cost effective or feasible. Consideration could be given to conducting a risk assessment to determine what level of risk the identified PAHs/metals pose to the applicable receptors. In the interim, a soil management plan should also be considered for any activities that may require ground disturbance where fill materials have been identified to ensure that the soils are appropriately managed.

Potential PAH/metals impacts may also remain present in association with former rail lines adjacent to and/or formerly present on the Property as well as use of any creosote-treated timber piles for the buildings (including the confirmed creosote-treated piles beneath the power plant).

Area 6 - PAHs & Metals: Pump House #1 and #2

Past investigations completed by Thurber have identified between 6 and 9 metres of fill, including brick, clay tile, and concrete on the Property between the pump houses that are situated south of the power plant. Ash-like material was also reportedly encountered at approximately 4.0 mbg, which contained barium, beryllium, and copper concentrations that would exceed the 2014 Alberta Tier 1 Guidelines. The bottom ash likely originated from burning coal in the boilers of the power plant until 1949, after which time the boilers were converted to gas/oil.

In November 2014, four boreholes (two of which were completed as groundwater monitoring wells) were advanced between the pump houses. General soil lithology identified a mix of clay, silt, and sand fill layers extending to depths of approximately 6.6 to 7.5 mbg. Within these layers, debris such as brick, masonry, concrete, and glass were noted in three of the four boreholes, from depths ranging from 1.3 to 4.6 mbg. A coal or ash-like material containing slag (presumably bottom ash) was identified in one of the boreholes from approximately 2.5 to 4.2 mbg, and a sand with a high coal content was also noted in a second borehole from approximately 5.1 to 6.6 mbg.

Based on the results of the investigation, the fill materials identified between the two pump houses appear to have been impacted (PAHs and metals). Leachate analysis of PAHs (via synthetic precipitation leaching procedure (SPLP)) was completed for select samples, the results of which indicate that there is limited risk associated with PAH parameters leaching from the soil due to precipitation. With regards to the metals, elevated concentrations of barium and boron are likely

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page vi of 47

related to the identified high coal content and bottom ash, while the identified debris may be a source of the identified arsenic, copper, and lead.

The two monitoring wells were monitored and sampled in November 2014 and PAH parameter concentrations (anthracene, fluoranthene, pyrene, benzo(a)anthracene, and benzo(a)pyrene) were identified above guidelines in one or both of the monitoring wells. With regard to metals, the groundwater does not appear to have been impacted.

Removal of the soils within this area would likely not be feasible due to cost, location, and volume for removal. Should the area remain undisturbed, consideration could be given to completing a risk assessment to further define the level of risk posed by the identified metals and PAHs. However, further assessment of this area using the 2014 Alberta Tier 2 Guidelines should be completed due to the close proximity of identified impacts to the North Saskatchewan River.

Area 7 - Hydrocarbons: Watermark Building

A diesel underground storage tank (UST) was removed to the east of this building in 1989, at which time petroleum hydrocarbon impacts were identified in both the soil and groundwater, extending to bedrock at approximately 12 mbg (the area was excavated to approximately 5 mbg and backfilled). A vapour extraction system (VES) was subsequently installed in 1989/1990 and operated until it was decommissioned in 1994 following further assessment of the impacted area.

In October 2014, three boreholes (all completed as monitoring wells) were installed within the vicinity of the former diesel UST to confirm if the area has been adequately remediated. Groundwater samples were also collected from these monitoring wells in November/December 2014. Based on the results of the investigation, there do not appear to be any residual petroleum hydrocarbon impacts present within the soil or groundwater at the locations tested. Nichols Environmental has no further recommendations for assessment with regards to petroleum hydrocarbons at this time for Area 7, as the remediation work that was completed appears to have been effective.

Summary

A summary of the contaminants of concern (COCs) for each area, as well as the potential source, scope, results, and general conclusions and recommendations, is provided on the following page.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page vii of 47

Area	COCs	Source/ Scope	Results	Conclusions/ Recommendations
1	Mercury	Historical spill/remediation at the natural gas metering station. Confirmation that all impacts have been	No residual mercury impacts, but boron above guidelines in soil. Groundwater not impacted.	No further assessment for mercury. Risk management for boron.
		remediated.		
2	PAHs	Creosote-treated piles from former reactivators.	No residual PAH impacts (above guidelines) in the groundwater.	No further assessment unless area is redeveloped.
		Confirm current groundwater conditions.		PAH-impacted soil known to be present near surface.
3	PAHs Hydrocarbons Metals	Two historical burn pits from fire training, south of the Watermark Building. Confirmation of depth of impacts/delineation of the northern plume and if the two plumes were connected.	Impacted soils present to depth of at least 4.5 mbg (potentially up to 6.1 mbg) in the northern plume. Closure to the west not obtained due to presence of a utility corridor. Two plumes do not appear to be connected. PAHs present in other fill materials identified outside of the northern plume. Groundwater not impacted.	Delineation of hydrocarbon impacts to the west and southwest of the northern plume. Remediation of PAHs and hydrocarbons within the northern plume (related to burn activities). Risk assessment to determine level of risk presented by PAHs within the identified fill materials. Development of a soil management plan for ground disturbance activities in this area.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page viii of 47

Area	COCs	Source/ Scope	Results	Conclusions/ Recommendations
4	TCE	Former hazardous materials storage. Delineation of TCE.	Area under construction. Previous assessments identified PAH and metal-impacted fill materials in area.	Confirm with EPCOR documentation of removal of impacted soils prior to building construction and any mitigation measures implemented to manage identified contamination.
5	PAHs Metals	Fill materials across the Property. Confirmation of the extent of impacted fill materials present on the Property.	Impacted materials are widespread on the southern portion of Property in relation to the water and power plant.	Risk assessment to determine level of risk presented by the PAHs/metals. Development of a soil management plan for ground disturbance activities on the Property.
6	PAHs Metals	Fill (bottom ash) materials between Pump House # 1 and Pump House #2. Confirmation of the extent of impacts.	Impacted fill materials to a maximum depth of approximately 7.5 metres. Groundwater impacted by PAHs.	Tier 2 Risk assessment to determine level of risk presented by the PAHs/metals to the North Saskatchewan River.
7	Hydrocarbons	Former UST east of the Watermark Building. Confirmation of effectiveness of past remediation efforts (VES).	No residual petroleum hydrocarbon impacts in the soil or groundwater.	No further assessment with regards to petroleum hydrocarbons.

The statements made in this Executive Summary are subject to the same limitations included in Section 10.2, and are to be read in conjunction with the remainder of this report.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page ix of 47

TABLE OF CONTENTS

Executive Summary i			
Table of	Contents	(
1.0	ntroduction	I	
1.1	BackgroundArea 1 - Mercury: Natural Gas Metering Station21.1.1Area 2 - Creosote: Former Reactivator21.1.2Area 3 - PAHs, Hydrocarbons & Metals: Former Burn Pit21.1.3Area 4 - TCE: Former Hazardous Materials Storage21.1.5Area 5 - PAHs & Metals Across Site21.1.6Area 6 - PAHs & Metals: Pump House #1 and #221.1.7Area 7 - Hydrocarbons: Watermark Building6	2 3 3 4 5 5	
2.0	Scope of Work		
2.1 2.2 2.3 2.4 2.5 2.6 2.7	Area 1 - Mercury: Natural Gas Metering Station8Area 2 - Creosote: Former Reactivator8Area 3 - PAHs, Hydrocarbons & Metals: Former Burn Pit9Area 4 - TCE: Former Hazardous Materials Storage9Area 5 - PAHs & Metals Across Site10Area 6 - PAHs & Metals: Pump House #1 and #210Area 7 - Hydrocarbons: Watermark Building11		
3.0	Property Description	2	
3.1 3.2 3.3	Location and Development Details12Physical Description12Geology, Topography, and Drainage13	2	
4.0	Methodology 14	1	
4.1 4.2 4.3 4.4	Hazard Assessment and Utility Locations 14 Soil Sampling Program 14 Groundwater Sampling Program 15 Survey 17	1 5	
5.0	Subsoil Stratigraphy	3	
5.1	Area 1 - Mercury: Natural Gas Metering Station	3	

5.2 5.3 5.4 5.5	Area 3 - PAHs, Hydrocarbons & Metals: Former Burn Pit18Area 5 - PAHs & Metals Across Site19Area 6 - PAHs & Metals: Pump House #1 and #219Area 7 - Hydrocarbons: Watermark Building20			
6.0	Assessment Guidelines 2 ⁻			
6.1 6.2 6.3 6.4	Land Us Water V Parame	ory Framework	22 22 23	
7.0	Field an	Field and Analytical Results		
7.1	7.1.1	Sults Area 1 - Mercury: Natural Gas Metering Station 7.1.1.1 Organic Vapour Concentrations 7.1.1.2 Soil Analysis - Metals	24 24 24	
	7.1.2	Area 3 - PAHs, Hydrocarbons & Metals: Former Burn Pit7.1.2.1Organic Vapour Concentrations7.1.2.2Soil Analysis - Polycyclic Aromatic Hydrocarbons7.1.2.3Soil Analysis - Petroleum Hydrocarbons7.1.2.4Soil Analysis - Metals	24 24 25	
	7.1.3	Area 5 - PAHs & Metals Across Site7.1.3.1Organic Vapour Concentrations7.1.3.2Soil Analysis - Polycyclic Aromatic Hydrocarbons7.1.3.3Soil Analysis - Metals	27 27 27	
	7.1.4	 Area 6 - PAHs & Metals: Pump House #1 and #2 7.1.4.1 Organic Vapour Concentrations 7.1.4.2 Soil Analysis - Polycyclic Aromatic Hydrocarbons 7.1.4.3 Soil Analysis - Leachable Polycyclic Aromatic Hydrocarbons 7.1.4.4 Soil Analysis - Metals 	27 27 28	
	7.1.5	Area 7 - Hydrocarbons: Watermark Building7.1.5.1Organic Vapour Concentrations7.1.5.2Soil Analysis - Petroleum Hydrocarbons	29	
7.2	Ground	water Results	30	
	7.2.1	Groundwater Field Monitoring	30	
	7.2.2	Area 1 - Mercury: Natural Gas Metering Station	31	
	7.2.3	Area 2 - Creosote: Former Reactivator 7.2.3.1 Groundwater Analyses - PAHs, Dibenzofuran & PCP	31	
	7.2.4	Area 3 - PAHs, Hydrocarbons & Metals: Former Burn Pit7.2.4.1Groundwater Analyses - PAHs7.2.4.2Groundwater Analyses - Petroleum Hydrocarbons7.2.4.3Groundwater Analyses - Dissolved Metals	31 31 31	

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page xi of 47

	7.2.4 7.2.5 Area 7.2.5 7.2.5 7.2.5 7.2.5	5 - PAHs & Metals Across Site5.1Groundwater Analyses - PAHs5.2Groundwater Analyses - Dissolved Metals	32 32
		6 - PAHs & Metals: Pump House #1 and #2	33 33 33
		7 - Hydrocarbons: Watermark Building	34 34
8.0	Conclusions a	nd Recommendations	35
8.1 8.2 8.3 8.4 8.5 8.6 8.7	Area 1 - Mercury: Natural Gas Metering StationArea 2 - Creosote: Former ReactivatorArea 3 - PAHs, Hydrocarbons & Metals: Former Burn PitArea 4 - TCE: Former Hazardous Materials StorageArea 5 - PAHs & Metals Across SiteArea 6 - PAHs & Metals: Pump House #1 and #2Area 7 - Hydrocarbons: Watermark Building		
9.0	References		
10.0	Qualifications and Limitations 45		
10.1 10.2			45 45
11.0 Closure		47	
		Figures	
Figure 1		Site Location	
Figure 2 Areas of Concern		Areas of Concern	
Figure 3 A		Area 1 Detail, Soil & Groundwater Data	
Figure 4	4	Area 3 Detail & Soil Data - PAHs, Metals & Hydrocarbons	
Figure 5 Area 3 Detail, Soil & Groundwater Data - PAHs & Metals		Area 3 Detail, Soil & Groundwater Data - PAHs & Metals	

- Figure 6 Area 5 Detail, Soil & Groundwater Data
- Figure 7 Area 6 Detail, Soil & Groundwater Data
- Figure 8 Cross-Section A-A'

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page xii of 47

Figure 9	Area 7 Detail
Figure 10	Groundwater Contours & Flow Direction (Entire Site)
Figure 11	Area 2 Detail and Groundwater Data

TABLES

Table 1	Field Organic Vapour Concentrations
Table 2	Soil Analyses - Metals (Area 1)
Table 3	Soil Analyses - Polycyclic Aromatic Hydrocarbons (Area 3)
Table 4	Soil Analyses - Petroleum Hydrocarbons (Area 3)
Table 5	Soil Analyses - Metals (Area 3)
Table 6	Soil Analyses - Polycyclic Aromatic Hydrocarbons (Areas 1 & 5)
Table 7	Soil Analyses - Metals (Area 5)
Table 8	Soil Analyses - Polycyclic Aromatic Hydrocarbons (Area 6)
Table 9	Leachate Analyses - Polycyclic Aromatic Hydrocarbons (Area 6)
Table 10	Soil Analyses - Metals (Area 6)
Table 11	Soil Analyses - Petroleum Hydrocarbons (Area 7)
Table 12	Groundwater Monitoring Data
Table 13	Groundwater Quality Data
Table 14	Groundwater Analyses - Dissolved Metals
Table 15	Groundwater Analyses - Polycyclic Aromatic Hydrocarbons
Table 16	Groundwater Analyses - Polychlorinated Dibenzo(p)dioxins and Dibenzofurans (Area 2)
Table 17	Groundwater Analyses - Petroleum Hydrocarbons (Areas 3 & 7)
Table 18	Groundwater Analyses - Routine Parameters (Areas 3 & 5)

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page xiii of 47

APPENDICES

Appendix A	Record of Site Condition
Appendix B	Site Photographs
Appendix C	List of Reviewed Reports
Appendix D	Borehole Logs
Appendix E	Soil and Groundwater Methodologies
Appendix F	Water Well Reconnaissance Report
Appendix G	Signed Analytical Reports

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 1 of 47

1.0 INTRODUCTION

Nichols Environmental (Canada) Ltd. was retained by The City of Edmonton to conduct a Phase II ESA at 9469 Rossdale Road NW & 10155 - 96th Avenue NW, located in Edmonton, Alberta, and legally described as Block OT; Plan NB (herein referred to as the "Property"). Figure 1 depicts the location of the Property relative to the surrounding area. As required by AESRD, a completed Record of Site Condition is presented in Appendix A. A photographic summary of the investigation can be found in Appendix B.

The purpose of a Phase II ESA is to confirm the presence of and characterize the substances of concern at a given site. Characterization may range from simple identification to a full delineation of the contamination on site. Phase II ESAs may be used to confirm the findings of a Phase I ESA, supplement previous iterations of a Phase II ESA, gather information in support of remedial measures or site development, make informed decisions about property transactions, or establish a baseline of environmental conditions (Canadian Standards Association Z769-00, Phase II Environmental Site Assessment).

1.1 Background

The Property has been under the ownership of The City of Edmonton since 1930, as based on a Phase I ESA completed by Thurber in 2013. The Property has history dating back to 1802 and has encompassed a number of developments throughout the years, as identified further in Section 3.0. Most recently, the Property includes Telus Field, a former power generating station (power plant), electrical substations and a transformer switch yard, a gas metering station, a water treatment plant and associated buildings operated by EPCOR, the Ross Flats Apartments, and the Rossdale Community Hall.

As a part of this assessment, Nichols Environmental completed a review of the Phase I ESA completed by Thurber as well as available historical documentation, a full list for which is provided in Appendix C. Based on the findings of the Phase I ESA, Thurber initially identified a number of areas of concern on the Property related to historical activities.

Based on this review, and for the purpose of this assessment, the Property was divided into seven separate areas of concern, as provided below and in Figure 2.

- Area 1: Potential mercury-impacted soil in the vicinity of the natural gas metering station on lands that will be remaining under the ownership of The City of Edmonton;
- Area 2: Use of creosote-treated timber piles beneath the former reactivator site on lands that will be remaining undisturbed and under the ownership of The City of Edmonton;

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 2 of 47

- Area 3: PAH, hydrocarbon, and metals-impacted soils in the vicinity of a former burn pit area south of the Watermark Building on lands that will remain under the use of EPCOR;
- Area 4: Transportation, transfer and storage of bulk and hazardous chemicals in the water treatment plant and specifically within the former hazardous materials storage area on lands that will remain under the use of EPCOR;
- Area 5: A number of areas of concern for PAH and metals impacts on lands remaining under the ownership of The City of Edmonton as well as use by EPCOR. The areas were outlined as follows:
 - Former rail lines adjacent to the separated lot and entering the Property from the north at approximately 104th Street NW and extending alongside the power plant, with one extending toward the water treatment plant;
 - Use of creosote-treated timber piles beneath the power plant;
 - PAH-impacted soil in the vicinity of the former aboveground storage tank (AST) to the southeast of the water treatment plant;
 - PAH-impacted soil in the vicinity of the former ASTs south of the former High Pressure (HP) Plant;
 - Metals/PAH-impacted groundwater near the power plant; and
 - General quality of fill materials on the Property;
- Area 6: Metal-impacted fill materials located between Pump House #1 and Pump House #2 associated with bottom ash on lands that will be remaining under the ownership of The City of Edmonton; and
- Area 7: Hydrocarbon-impacted soil and groundwater in the vicinity of the Watermark Building associated with a former UST on lands that will remain under the use of EPCOR.

A summary of the findings for each of these areas, which document the potential COCs targeted for this assessment, is provided in the subsequent sections.

1.1.1 Area 1 - Mercury: Natural Gas Metering Station

In 1997, Komex International Ltd. (Komex) was retained by Northwest Utilities Limited (now ATCO) to complete an investigation at the natural gas metering station to the north of the power plant. The investigation subsequently documented the presence of mercury-impacted soils west of the natural gas metering station which had originated from a spill of elemental mercury. Remediation of this area included the removal of approximately 40 m³ of mercury-impacted soils in 1998. A composite closure sample was collected and submitted from the excavation which displayed elevated mercury concentrations. This raised the concern that a sub-sample component of the composite may not meet the current 2014 Alberta Tier 1 Guideline for mercury.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 3 of 47

As such, Nichols Environmental recommended further sampling within Area 1 with regards to mercury.

1.1.2 Area 2 - Creosote: Former Reactivator

An anticipated 514 30-feet long (approximately 9 m) creosote-treated piles are present on the northeast portion of the Property in the location of the two former reactivators. In 2004, a Phase II ESA was completed by EBA Engineering Consultants Ltd. (EBA) to confirm if there was any potential impact from the use of the creosote-treated piles. As a result of the investigation, trace concentrations of creosote-related PAHs were identified, including fluoranthene at 1.5 mbg in soil and low-level concentrations of dibenzofuran in groundwater. A letter dated September 24, 2004 from AESRD to EPCOR Water Services indicated that leaving the creosote-treated piles in place beneath the former reactivators was acceptable as long as the site remained undisturbed. AESRD also recommended that annual groundwater monitoring be conducted within this area for at least three years. This recommendation was subsequently fulfilled with further groundwater monitoring conducted by EBA from 2006 to 2008, which also identified low-level concentrations of dibenzofuran (2006) and PCP (2008) in groundwater.

At the time of assessment, three of the seven original monitoring wells remained present on the Property (C1, C6, and C7). The remaining monitoring wells are believed to have either been destroyed or covered during construction of a walking path on the east portion of this area.

To the best of our knowledge, Nichols Environmental is not aware of any further investigative work that has been completed in Area 2 with regards to the creosote-treated piles. As such, Nichols Environmental recommended further groundwater sampling within Area 2 to confirm if concentrations of the identified COCs remained or were above guidelines.

1.1.3 Area 3 - PAHs, Hydrocarbons & Metals: Former Burn Pit

This portion of the Property was formerly utilized by Fire Services, which included a fire training area (former burn pits) to the south of the current Watermark Building as identified in aerial photographs from the 1950s. In the early 2000s, a number of investigations were initiated to assess potential impacts from historical use, as this area was slated to be transferred to EPCOR.

Investigations completed by EBA in 2001/2002 identified hydrocarbon, metals, and PAH-impacted soil to the south of the Watermark Building and Fire Hall (adjacent east). The impacts were confirmed at 2.6 mbg south of the Watermark Building (northern plume) and at 7.6 mbg further to the south of this location (southern plume). The two areas are believed to be two separate plumes as the contamination noted in the northern plume appeared to be shallower in nature, extending from surface to approximately 3 metres in depth, while that of the southern plume was identified at depth, beneath overburden. Previous drilling conducted between the two plumes has

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 4 of 47

not included a collection of soil samples for laboratory analysis. As such, it remained to be confirmed that the two plumes were not connected. Groundwater data as recent as 2005 has also confirmed the presence of metals in groundwater, specifically iron and manganese as well as selenium and silver.

Based on a review of the previous findings, Nichols Environmental proposed to complete confirmation drilling within Area 3 to confirm the depth of impacts and to determine if the two contaminant plumes were connected. Nichols Environmental is aware that a Tier 2 Risk Assessment was also conducted on the southern plume in 2014, which confirmed that the plume was stable.

It should also be noted that during the course of the assessment, further documentation regarding this portion of the Property was identified. A Geotechnical Investigation that was completed in 2010 by Stantec Consulting Ltd. (Stantec) identified the presence of hydrocarbon-impacted soils to the south of the Watermark Building, adjacent to Waste Stream #7 and to the west of any other previously investigated areas. Hydrocarbon-like odours were noted at this location from approximately 1.8 to 4.0 mbg. A composite sample from this borehole was submitted, which identified petroleum hydrocarbon (PHC) Fraction 3 concentrations above guidelines (4,900 parts per million (ppm)) as well as boron concentrations (3.2 ppm) above guidelines. Further assessment of this area was not included as a part of the scope of work for the Phase II ESA as the information was provided after the field work had been completed.

1.1.4 Area 4 - TCE: Former Hazardous Materials Storage

In 2010, Thurber completed a Phase II ESA of the Rossdale Power Generating Station which included the assessment of the former hazardous material storage area south of the former carpenters shop on the Property. As a result of the investigation in this area, TCE concentrations greater than the 2010 Alberta Tier 1 Guidelines (and 2014 Guidelines) were identified at the location of borehole TH10-10 at a depth of 0 to 0.2 mbg in a fine-grained fill material. At the time of preparation of the scope of work for this assessment, the impacts do not appear to have been further delineated within this area, though it appears that the building formerly situated within this area had been removed in 2011.

This area was under construction at the time of the assessment, which was prohibitive to further testing. Upon discussion with EPCOR, further documentation confirmed that Thurber had been retained in 2013 to conduct an additional assessment which included the excavation of ten test pits to depths of between 1.3 and 5.4 mbg. Samples collected at approximately 0.1 mbg from three test pits advanced in the vicinity of TH10-10 did not identify any VOC parameter concentrations that exceeded guidelines. However, a number of samples contained PAH and metal parameter concentrations above guidelines, and one sample had PHC Fraction 3 concentrations which exceeded guidelines.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 5 of 47

Thurber concluded that the PAHs and metals were likely associated with all disturbed soils on the Property and that given the anticipated depth of excavation for the proposed building construction, the depth of disturbed soils, and the known depth of abandoned utilities, the entire volume of the excavation required for construction of the new building would require disposal at a Class II Landfill. Thurber also recommended the installation of a hydrocarbon-resistant liner or installation of a gravel bed system with slotted pipes to facilitate a vapour extraction system in order to manage potential vapour migration and/or recontamination from the surrounding soils.

No further documentation regarding removal of the soils or confirmation testing was available for review.

1.1.5 Area 5 - PAHs & Metals Across Site

Previous assessments had identified a number of locations across the Property with concentrations of metals and PAHs in the soil in excess of the 2014 Alberta Soil Remediation Guidelines. These locations have been associated with former ASTs, creosote-treated piles, a former rail spur, and fill materials.

The locations appeared to be widespread across the west and southern portion of the Property, with impacts ranging from surface to 3.8 mbg or greater for metals and from surface to 2.9 mbg for PAHs, though one area was confirmed to have PAH-impacted soil at 7.6 mbg (related to the Watermark Building and former fire training). Based on the available information, metals and PAHs concentrations present on the Property, Nichols Environmental suspects that the impacts may be related to the fill materials, as many of the documented locations have samples collected from either coarse or fine-grained fill near surface. As such, further sampling was recommended at other locations on the Property to confirm the presence/quality of the fill materials.

Through the course of the assessment further records were identified for the Property which identified the presence of fill materials. Specifically, the aforementioned geotechnical assessment in Section 1.1.3 conducted by Stantec also identified the presence of fill materials in all five of the boreholes advanced. The fill was characterized as clay with sand and gravel, containing occasional brick, wood, asphalt, and cobbles and extended to a maximum depth of approximately 3.4 mbg. The drilling locations were situated to the east and southeast of the AT Davies Building on the Property, as well as north, west and south of the Watermark Building. Further assessments from 2011 and 2012, conducted by Stantec and Thurber, respectively, also identified the presence of fill materials to the south of the main water plant building, to a depth of approximately 2.3 to 3.0 mbg.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 6 of 47

1.1.6 Area 6 - PAHs & Metals: Pump House #1 and #2

According to a report summary provided in the Phase I ESA completed by Thurber, past investigations completed by Thurber have identified between 6 and 9 metres of fill, including brick, clay tile, and concrete on the Property between the pump houses that are situated south of the power plant. Ash-like material was also reportedly encountered at approximately 4.0 mbg and groundwater was at 9.0 mbg. One sample that was collected in 1992 from the bottom ash area at approximately 3.8 to 4.6 mbg contained barium, beryllium, and copper concentrations that exceed the 2014 Alberta Tier 1 Guidelines for Residential/Parkland Land Use. Based on the available reports for review, the bottom ash originated from burning coal in the boilers of the power plant until 1949, after which time the boilers were converted to gas/oil. The ash was formerly loaded into small railcars beneath the boilers and then transported to the south of the main plant with the aid of conveyor belts and hopper cars.

Based on this information, Nichols Environmental recommended additional delineation within this area to determine the extent of the identified fill materials between the two pump houses, as well as analysis of PAHs to determine potential impacts as a result of the presence of the bottom ash.

1.1.7 Area 7 – Hydrocarbons: Watermark Building

In 1989, diesel USTs were removed from the Watermark Building and Fire Hall under the supervision of EBA. Documentation regarding the removal of the UST from the Watermark Building indicated that petroleum hydrocarbon impacts were present in both the soil and groundwater, extending to bedrock at approximately 12 mbg (the area was excavated to approximately 5 mbg and backfilled). A VES was subsequently installed in 1989/1990 and operated until it was decommissioned in 1994 following further assessment of the impacted area.

Based on a review of the available information, petroleum hydrocarbon concentrations from groundwater sampling conducted in 1994 would exceed the current 2014 Alberta Tier 1 Guidelines within the vicinity of the former UST. Concentrations of petroleum hydrocarbons reported in the soils at approximately 5.5 and 8.2 mbg would also exceed the current guidelines.

As such, Nichols Environmental recommended confirmation drilling within the former UST area to determine the present status of the soil and groundwater in relation to petroleum hydrocarbons, to determine if the area has been adequately remediated.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 7 of 47

2.0 SCOPE OF WORK

The proposed scope of work was presented to The City of Edmonton in a proposal dated July 14, 2014. The scope of work completed on the Property, as modified from the original scope, was as follows:

- Completed a review of the available documentation related to the Property;
- Prepared an Initial Project Review (IRP) for the scope of the Phase II ESA, following preliminary discussions regarding accessibility to the Property and finalization of drilling locations;
- Coordinated with The City of Edmonton and AMEC Foster Wheeler (retained through The City of Edmonton) the identification of areas on the Property requiring archeological supervision, which was subsequently provided by AMEC Foster Wheeler;
- Coordinated with EPCOR's onsite personnel access to drilling locations present within the boundaries of the EPCOR Water and power plants as well as reviewed drilling locations and known utility locations that may be in conflict with the work areas;
- Prepared a site-specific health and safety plan and completed a hazard assessment;
- Contacted Alberta One-Call to locate public utility lines in the work area;
- Engaged a qualified private utility location firm to estimate the location of private utility lines;
- Retained the services of a qualified drilling contractor to provide the necessary personnel and equipment to complete the drilling program, as outlined by area in the subsequent subsections;
- Collected soil samples from each borehole advanced at intervals specific to the locations as outlined below in the subsequent subsections for field vapour screening;
- Submitted soil samples for laboratory analysis, specific to locations as outlined below in the subsequent subsections, as well as one composite sample of the soil cuttings for landfill classification at Waste Management's West Edmonton Landfill;
- Mobilized to the Property a minimum of seven days after the monitoring wells were completed to field monitor the wells for water level, well headspace vapour concentrations, and presence of NAPL;

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 8 of 47

- Completed monitoring of field groundwater parameters, including pH, oxidation reduction potential (ORP), dissolved oxygen (DO), electrical conductivity (EC), and temperature using an In-Situ TROLL[®] 9500 flow-through meter and collected groundwater samples from the purged monitoring well;
- Coordinated with The City of Edmonton the surveying of all boreholes, groundwater monitoring wells and other relevant site features to a common reference point; and
- Prepared a report documenting the field observations and the analytical results. Recommendations for further assessment and/or remediation (if necessary) would be included in this report.

Authorization to proceed with the scope of work was provided by The City of Edmonton on August 12, 2014. Scopes of work specific to each area on the Property are provided below.

2.1 Area 1 - Mercury: Natural Gas Metering Station

The scope of work completed to address Area 1 was as follows:

- Obtained utility clearance from ATCO Pipelines to work within the vicinity of their abandoned high-pressure gas line in this area;
- Advanced two boreholes (A1: 14-19 and 14-20) to approximately 3.0 mbg. A third borehole was also advanced to approximately 10.5 mbg (A1: 14-18) and was completed as a flush-mount groundwater monitoring well;
- Collected soil samples from each borehole advanced at 0.5 m intervals, or at the discretion of Nichols Environmental's representative, for field vapour screening;
- Submitted six soil samples for laboratory analysis of metals and one for grain size; and
- Submitted a groundwater sample for laboratory analysis of metals.

As per requirements of the IPR, a tracked drilling rig was utilized for the advancement of these boreholes. Archeological supervision was identified as a requirement for Area 1 and was provided by AMEC Foster Wheeler during any ground disturbance work in this area.

2.2 Area 2 - Creosote: Former Reactivator

The scope of work completed to address Area 2 was as follows:

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 9 of 47

- Monitored, sampled, and surveyed the three existing monitoring wells present within Area 2 (wells C1, C6, and C7); and
- Submitted three groundwater samples for laboratory analysis of PAHs as well as dibenzofuran and PCP.
- 2.3 Area 3 PAHs, Hydrocarbons & Metals: Former Burn Pit

The scope of work completed to address Area 3 was as follows:

- Advanced six boreholes to a maximum depth of 12.1 mbg in and surrounding the known northern plume to confirm depth and delineation (A3: 14-08 to 14-13), as well as between the north and south plumes. One of the boreholes was completed as a groundwater monitoring well with a flush-mount traffic box (A3: 14-09);
- Collected soil samples from each borehole advanced at 0.5 m intervals to approximately 3.0 mbg, and 0.75 m intervals thereafter, or at the discretion of Nichols Environmental's representative, for field vapour screening;
- Submitted soil samples for laboratory analysis as follows:
 - Twenty samples for PAHs;
 - Thirteen samples for benzene, toluene, ethylbenzene, xylenes (BTEX), and PHC
 Fractions 1 through 4; and
 - Seventeen samples for metals;
- In addition to the newly installed monitoring well, field monitoring was also conducted on all accessible previously existing wells, only one of which was identified to contain groundwater;
- Submitted groundwater samples for laboratory analysis as follows:
 - Two samples for PAHs;
 - Two samples for BTEX and PHC Fractions 1 to 3+;
 - Two samples for metals; and
 - Two samples for routine water parameters.
- 2.4 Area 4 TCE: Former Hazardous Materials Storage

A scope of work to complete further delineation of the identified TCE was initially proposed for Area 4. However, this scope was not executed as the area was under construction at the time of the assessment. In consultation with EPCOR personnel, further documentation regarding Area 4 was identified, a summary for which was previously discussed in Section 1.1.4.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 10 of 47

2.5 Area 5 - PAHs & Metals Across Site

The scope of work completed to address Area 5 was as follows:

- Advanced two boreholes to a maximum depth of 4.6 mbg (A5: 14-03 and 14-04). Two additional boreholes (A5: 14-01 and 14-02) were also advanced to a maximum depth of 10.0 mbg and were completed as monitoring wells with flush-mount traffic boxes for use as background locations;
- Collected soil samples from each borehole advanced at 0.5 m intervals to approximately 4.5 mbg, and 0.75 m intervals thereafter, or at the discretion of Nichols Environmental's representative, for field vapour screening;
- Submitted soil samples for laboratory analysis as follows:
 - A minimum of six samples for PAHs;
 - A minimum of six samples for metals;
- Submitted additional soil samples from where fill materials were encountered in Areas 1, 3 and 6, for analysis of metals and PAHs; and
- Submitted a groundwater sample from A5: 14–01 for laboratory analysis of PAHs, metals, and routine water parameters.

One borehole location had been proposed on the Property to the west of the power plant. However, the area was being utilized as a laydown yard for bridge construction, as such, the location was not completed. Three additional drilling locations had been proposed on the Property to assess fill materials to the east of the power plant as well as south and east of the Water Plant. However, upon consultation with EPCOR personnel, review of utility maps, as well as identification of further assessment work completed for the Property which identified the presence of fill materials in these general areas, the drilling locations were not completed. A discussion of the additional assessment work was previously discussed in Section 1.1.5.

2.6 Area 6 - PAHs & Metals: Pump House #1 and #2

The scope of work completed to address Area 6 was as follows:

• Advanced four boreholes, spaced approximately 15 metres apart along the bank, to a maximum depth of 10.0 to 12.0 mbg (A5: 14-14 to 14-17). Two would be completed as groundwater monitoring wells with stickup protective casings (A5: 14-15 and 14-17);

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 11 of 47

- Collected soil samples from each borehole advanced at 0.5 m intervals, or at the discretion of Nichols Environmental's representative, for field vapour screening;
- Submitted soil samples for laboratory analysis as follows:
 - Eleven samples for PAHs;
 - Thirteen samples for metals;
 - Nine samples for pH;
 - Two samples for grain size analysis; and
 - Four samples for leachate analysis for PAHs; and
- Submitted groundwater samples from each monitoring well for laboratory analysis of PAHs and metals.

As per requirements of the IPR, a tracked drilling rig was utilized for the advancement of these boreholes. Archeological supervision was identified as a requirement for Area 6 and was provided by AMEC Foster Wheeler during any ground disturbance work in this area.

2.7 Area 7 – Hydrocarbons: Watermark Building

The scope of work completed to address Area 7 was as follows:

- Retained a concrete coring contractor to provide access to two of the borehole locations within this area (A7: 14-05 and 14-06);
- Advanced three boreholes to a maximum depth of 12.1 mbg, all of which were completed as monitoring wells with flush-mount traffic boxes (A7: 14-05 to 14-07);
- Collected soil samples from each borehole advanced at 0.75 m intervals, or at the discretion of Nichols Environmental's representative, for field vapour screening;
- Submitted six soil samples for laboratory analysis of BTEX and PHC Fractions 1 through 4, and one sample for grain size; and
- Submitted groundwater samples from each monitoring well for laboratory analysis of BTEX and PHC Fractions 1 through 3+.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 12 of 47

3.0 PROPERTY DESCRIPTION

- 3.1 Location and Development Details
- Location of Site: 9469 Rossdale Road NW & 10155 96th Avenue NW Edmonton, Alberta

Legal Description: Block OT; Plan NB

Current Owner: The City of Edmonton

Year Developed: As based on the 2013 Thurber Phase I ESA, the Property has known history dating back to 1802. Development has varied through time and has included exhibition grounds (late 1800s to early 1900s), an apartment building (1911 to present), a community hall (1970s to present), football grounds (1920s to 1940s), and a ball diamond (1940s to present). Fire Services' service centre also operated on the Property from the 1950s to the 1990s, and the power plant and water treatment plant have been present on the Property since 1902.

3.2 Physical Description

The Property is located in the Rossdale neighbourhood of Edmonton, Alberta and is currently under a number of zoning uses, which are listed further in Section 6.2. The Property covers an approximate area of 19.5 hectares, and at the time of the investigation, was occupied by Telus Field, a former power plant, electrical substations and transformer switch yard, a gas metering station, a water treatment plant and associated buildings/infrastructure operated by EPCOR, the Ross Flats Apartments, and the Rossdale Community Hall.

A number of buildings were present on the Property at the time of inspection, and have also historically been present on the Property. During the assessment, construction activities were taking place at the location of a former carpenters' shop (Area 4), and the former high power (HP) plant on the west portion of the Property was being utilized as a laydown area for construction associated with Walterdale Bridge.

The main portion of the Property was accessed through a security gate off of Rossdale Road NW, which is situated to the west of the Property. Access to areas outside of EPCOR operations was via 96th Avenue NW to the north. Area 6 to the south of the Property was accessed via a walking trail that borders the North Saskatchewan River. Surrounding land uses are a mix of residential and parkland.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 13 of 47

3.3 Geology, Topography, and Drainage

The near surface geology of the Edmonton area is characterized by glacial deposits which include, but are not limited to, tills and lacustrine deposits that vary in thickness across the city. Intermixed with these glacial deposits are sands, silts, and gravels that may be of fluvial origin. Below the surficial deposits within the Edmonton area is the Horseshoe Canyon Formation, which is the lower part of the Edmonton Group. The Horseshoe Canyon consists of sandstone, siltstone and shale with interbedded coal seams.

The Property itself is situated on a river terrace, which includes alluvial gravel, sand, and silt, and very little surficial deposits. Past investigations have identified a substantial amount of fill materials (up to 5 m) which overlay sand and gravel. The sand and gravel are followed by the aforementioned formation at a depth of approximately 10 to 14 mbg.

The North Saskatchewan River provides drainage for the Edmonton area and is located directly south of the Property. The North Saskatchewan River is more or less coincident with buried valleys containing sand and gravel deposits in the region. Groundwater flow systems can be controlled by the connection between the river and buried valley sand and gravel deposits, and by the incised nature of the valleys. Previous investigations have documented groundwater at approximately 9 to 10 mbg in areas closest to the river, with noted seasonal fluctuations closely tied to the river. Historically, groundwater flow has been assessed in a southerly direction, toward the river.

The local topography was primarily flat with a gradual slope away from the Property to catch basins and the river. Surface drainage on the Property is anticipated to be primarily via overland flow toward the catch basins present on the Property. No standing water was observed on the Property at the time of the investigation. The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 14 of 47

4.0 METHODOLOGY

4.1 Hazard Assessment and Utility Locations

Prior to completing any field work on the Property, Nichols Environmental completed a site-specific health and safety plan and hazard assessment. Included in the health and safety plan were requirements for personal protective equipment (PPE), an emergency contact section for situations where workers may require medical attention, and protocol for working around heavy equipment, rotating equipment, and traffic. Nichols Environmental personnel and relevant subcontractors also completed EPCOR's safety and site orientation prior to completion of the field work. A ground disturbance protocol to identify all potential buried underground utilities and structures was also put in place.

Alberta One-Call (ticket numbers 2014413259 and 2014412666) identified a number of buried utilities throughout the work areas, including buried power, gas, water, and sanitary/storm. In addition to Alberta One-Call, representatives from EPCOR and The City of Edmonton also provided identification of power/water/sewer lines on the Property as a part of the One-Call tickets. An abandoned ATCO Pipelines right-of-way (ROW) was also identified in Area 1, for which a crossing agreement (Crossing Number AP14/2752) was obtained from ATCO Pipelines.

Maverick Inspection Ltd. of Edmonton, Alberta was retained to identify private utilities within the work area. Those utility locations marked by Alberta One-Call were also confirmed.

Nichols Environmental also consulted with on-site EPCOR personnel to determine the location of other private utilities within the work areas, including waste stream lines, water, private power, and historical infrastructure. As previously discussed in Section 2.5, it was determined that three boreholes proposed for advancement to delineate the extent of fill materials within Area 5 were within high risk areas and were not necessary. Other remaining borehole locations situated nearby identified underground utilities were moved to safe distances where possible.

Where feasible, known utility locations within the work areas are provided in Figures 3 through 7.

4.2 Soil Sampling Program

Nichols Environmental completed the drilling program over five days in October and November 2014. These dates and associated areas included: October 27 (Area 5), October 28 (Area 7), October 30 (Area 3), November 3 (Area 6), and November 19 (Area 1).

Over the course of the drilling program, a total of 20 boreholes was advanced on the Property. Of the 20 boreholes, nine were completed as groundwater monitoring wells. The boreholes were advanced by All Service Drilling Inc. (October/November 2014) or Sun-Alta Drilling Ltd.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 15 of 47

(November 19, 2014), under the supervision of Nichols Environmental, using either a truck or track-mounted drill rig and solid-stem augers.

Soil samples were collected from the auger at 0.5 or 0.75 m intervals (pending the requirement of the Area), or at the discretion of Nichols Environmental's representative, for field testing of organic vapour concentrations (OVCs), and potential laboratory analyses. Samples collected for OVC analysis were placed in large plastic freezer bags and sealed with approximately 50% vapour headspace. The OVCs were measured after the samples reached an ambient temperature (approximately 20°C) with a MiniRae[™] photo-ionization device (PID). The PID was calibrated following protocols outlined by MiniRae[™] using a known standard. Duplicate soil samples collected for potential laboratory analyses were placed into 125-mL glass jars which were filled to capacity with soil and fitted with screw-down, Teflon[™]-lined lids. All samples were kept on ice in a cooler to moderate temperature fluctuations prior to delivery to the laboratory.

4.3 Groundwater Sampling Program

Each groundwater monitoring well was constructed of 50.8-mm Schedule 40 polyvinyl chloride (PVC) standpipe. A 0.254-mm slot PVC screen was affixed to the bottom of each well casing, while solid PVC was used to bring each monitoring well to grade. A slip cap was placed on the bottom of each well to prevent sediment intrusion. The tubing connections consisted of flush-joint threaded couplings. The annular space around each well screen was filled with Sil-9 sand to a minimum of 0.3 m above the well screen. The Sil-9 sand was used to form a filter pack to ensure that formation water can pass easily into each monitoring well.

Above the sand, each borehole was backfilled with bentonite chips to within 300 mm of the ground surface. The bentonite was added to minimize surface water intrusion into each well bore. The groundwater monitoring wells were completed with 200 mm-diameter flush-mount, bolt-down traffic casings which were grouted into place (Area 1, Area 3, Area 5, and Area 7) or with steel, stick up protective casings (Area 6). The installation details are presented on the borehole logs in Appendix D.

On November 20 and 21, 2014, all newly installed and historical groundwater monitoring wells were monitored for well headspace OVCs using a MiniRae[™] PID. Each well was then monitored for depth to groundwater, total depth and the presence or absence of NAPL. Nichols Environmental also returned to the Property on December 18, 2014 to monitor and sample wells A5: 14-02, A7: 14-07, A3: 14-09, and MW203.

Using an In-Situ Inc. TROLL[®] 9500 multi-parameter meter complete with a flow-through cell and a variable rate peristaltic pump (one of GeoPump Easy-Load II[®] or Spectra Field-Pro, unless a specialized pump is required), field readings for pH, ORP, DO, EC and temperature were collected. Readings were recorded every thirty seconds until stabilization had occurred. Stabilization of in

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 16 of 47

situ parameters was characterized by three consecutive measurements which met the following standards:

- $pH = \pm 10\% \text{ or } \pm 0.1 \text{ units};$
- ORP = $\pm 10\%$ or ± 10 millivolts (mV);
- $DO = \pm 10\%$ or ± 0.1 milligrams per litre (mg/L);
- EC = $\pm 10\%$ or ± 5 microSiemens per centimetre (μ S/cm); and
- Temperature = $\pm 10\%$ or $\pm 0.1^{\circ}$ C.

The objective of low-flow sampling is to minimize stress (drawdown) to the groundwater system. Typically, flow rates in the order of 0.1 - 0.5 L/min are used. However, this is dependent on site-specific hydrogeology. Flow rates were adjusted during the initial pumping to determine a steady state flow rate sufficient for the specific site. Sufficient flow rates are characterized by groundwater drawdown of less than 30 cm during continued pumping. If groundwater recharge was not sufficient to complete low-flow sampling, manual purging of the monitoring wells was completed and then the monitoring wells were allowed to recharge. The pump was then utilized to pass groundwater through a multi-parameter meter to determine in situ groundwater parameter concentrations. Stabilization of the in situ parameters may not have been achieved if groundwater recharge was slow.

Once field stabilization occurred, the flow-through cell was disconnected from the pumping apparatus and groundwater samples were collected and placed into laboratory-specific bottles. Preservation and field filtering of groundwater samples were completed based on the type of laboratory analysis required and samples were stored in insulated coolers for transportation to the laboratory. The pump, associated tubing, and the flow-through cell were cleaned with distilled water after each sample was collected and prior to the next sample being collected, thus minimizing the risk of cross contamination. The pumping system was also allowed to condition to each groundwater monitoring well by initially allowing groundwater to pass through the system, prior to readings being completed.

The field protocols and QA/QC procedures utilized by Nichols Environmental were in accordance with standard industry protocols and all samples were transported under chain of custody protocols. EXOVA conducted all soil and groundwater laboratory analyses.

Detailed sampling methodology is presented in Appendix E.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 17 of 47

4.4 Survey

All surveying requirements were co-ordinated through and completed by The City of Edmonton. The horizontal and vertical positions of each borehole and monitoring well advanced during the drilling program were measured to a common datum and locations of relevant site features were also collected. It should be noted that select monitoring well locations within Area 3 were not able to be surveyed due to the presence of vehicles over the borehole/monitoring well locations on the date of the survey.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 18 of 47

5.0 SUBSOIL STRATIGRAPHY

The borehole logs are presented in Appendix D. A summary of each investigation area is provided in the subsequent subsection.

5.1 Area 1 - Mercury: Natural Gas Metering Station

In general, a sand and gravel fill cover was identified in all three boreholes to a maximum depth of approximately 1.2 mbg. The sand and gravel fill cover was followed by silt, which contained some clay and some sand, and was soft and dry to damp in moisture. The silt was noted to increase in clay content and firmness with increasing depth. White deposits were noted in the silt at approximately 1.6 mbg in all boreholes and bone fragments were identified at approximately 1.8 mbg in A1: 14-20. The silt extended to beyond borehole completion in A1: 14-19 and 14-20. In borehole A1: 14-18, the silt was followed by sand at approximately 4.0 mbg. The sand extended to beyond completion of this borehole, and was loose and damp, and became wet at approximately 8.2 mbg. Coal was encountered in the sand at approximately 7.5 mbg and gravel at approximately 9.1 mbg.

5.2 Area 3 - PAHs, Hydrocarbons & Metals: Former Burn Pit

Asphalt followed by sand and gravel fill was encountered at surface in boreholes A3: 14-08 to 14-11, and asphalt followed by clay fill containing brick debris was identified in A3: 14-12 to approximately 1.3 mbg. Clay fill containing concrete/brick debris was also noted in A3: 14-11 to approximately 1.6 mbg. Beneath the initial sand and gravel fill layer in A3: 14-10 was a mix of sand, silt, and clay fill to approximately 3.1 mbg.

A soft to firm, low to medium plasticity clay fill was identified in A3: 14-09 beneath the sand and gravel fill surface layer and in A3: 14-13 beginning at surface to approximately 5.7 mbg. This material was noted to increase in sand content with depth, and woody debris was noted in both at the clay fill/silt interfaces at 3.1 and 5.7 mbg, respectively.

Silt containing some clay and some sand was identified in all boreholes beneath the aforementioned layers, with starting depths ranging from approximately 1.0 mbg in A3: 14-09 to 5.7 mbg in A3: 14-13, and extending to a maximum depth of approximately 7.6 mbg in the same borehole, or beyond completion in A3: 14-08. Beneath the silt was a sand and gravel layer which was loose, brown to black in colour, and damp. Coal was also noted within this layer in all boreholes, including a seam at approximately 6.5 mbg in A3: 14-10. The sand and gravel in A3: 14-13 was also noted to contain some clay and some silt. Beneath this sand and gravel layer, a firm, blue to grey, and dry weathered bedrock was encountered in three of the boreholes (A3: 14-09, 14-11, and 14-12) at depths ranging from approximately 9.8 to 11.5 mbg. A

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 19 of 47

hydrocarbon odour was noted in the bedrock sample collected from A3: 14-12, though it is suspected this may be a result of smearing as the auger was pulled to surface.

A hydrocarbon odour was noted within sand layers in the clay fill in A3: 14-09 from approximately 0.5 to 0.9 mbg and 2.1 to 2.4 mbg, in A3: 14-12 from beneath the asphalt to approximately 4.7 mbg within both a clay fill then silt layer, and in A3: 14-13 at approximately 3.6 mbg within a clay fill layer.

5.3 Area 5 - PAHs & Metals Across Site

Variations of clay, silty clay, and/or silt were present near surface in all four boreholes, extending to a maximum depth of approximately 3.0 mbg. Of the boreholes, wood fragments were noted in A5: 14-03. Beneath these initial layers was a fine grained, loose, light brown or salt and pepper coloured, dry sand. Coal inclusions were also noted to be present in the sand, as well as a silt layer in A5: 14-04. This sand extended beyond completion in boreholes A5: 14-03 and 14-04.

In borehole A5: 14-01, the sand was followed by a clayey silt layer at approximately 6.4 to 9.2 mbg. This layer contained some sand, was soft, brown to grey in colour and was wet to saturated, with a noted decrease in moisture at approximately 7.2 mbg. Pebbles were also encountered within this layer at approximately 7.1 mbg. The clayey silt was followed by a hard, dense, low to medium plastic, grey and damp clay to beyond borehole completion. In borehole A5: 14-02, the sand was followed by a firm, low plastic, blue to grey, dry silt which started at approximately 7.6 and extended beyond the borehole completion depth.

5.4 Area 6 - PAHs & Metals: Pump House #1 and #2

A loose, dry, black to brown-coloured clay fill was encountered at surface in all four boreholes. The depth of this clay fill extended to a maximum depth of approximately 2.1 mbg in A6: 14-14 and a minimum depth of approximately 0.3 mbg in A6: 14-15. A loose, brown, and dry silty fill layer was identified beneath the clay fill in A6: 14-14 and a soft, low plastic, damp silt layer was identified in A6:14-17. In the remaining two boreholes, which were situated between the two aforementioned boreholes, a variation in silt and sand fill layers was identified beneath the surficial clay layer to a depth of approximately 2.5 mbg.

In borehole A6: 14-16, debris such as brick, masonry, and glass was identified from approximately 1.3 to 2.5 mbg within the sand/silt fill layer. Debris such as brick and concrete was also noted in A6: 14-14 at approximately 3.1 to 4.6 mbg within a clay fill layer that contained some sand and silt, and in A6: 14-15 at approximately 2.7 mbg in a sand layer that contained some silt and gravel.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 20 of 47

In borehole A6: 14-14, beneath the surface layers a clay fill containing some sand and some silt as well as coal inclusions was noted to a depth of approximately 7.5 mbg. As previously mentioned, debris was noted in this clay fill. The clay fill increased in sand content with depth and became moist at approximately 4.6 mbg. This was the only borehole in which clay materials were encountered beyond 2 mbg.

In A6: 14-15 and A6: 14-17, sand was encountered to a maximum depth of approximately 6.6 mbg beneath the aforementioned silt/sand layers. As previously mentioned, the sand in A6:14-15 contained debris, and is believed to be fill material. In A6: 14-16, coal or ash-like material containing slag was encountered at approximately 2.5 to 4.2 mbg, which was followed by a silt containing some clay to approximately 6.6 mbg. A moist and soft silt layer containing some coal was also present at approximately 5.7 to 6.6 mbg in A6: 14-15. In A6: 14-17, a loose, dark brown and dry sand layer was noted to approximately 6.6 mbg, which became black and was noted to have a high coal content at approximately 5.1 mbg.

These discussed layers are believed to be characteristic of potential fill materials utilized between the two pump houses. Below these layers the boreholes were characterized by sand, or sand and gravel containing cobbles and/or pebbles, followed by weathered, damp to dry, blue to grey or black to grey to brown coloured bedrock with the exception of A6: 14-16, in which no bedrock was encountered.

5.5 Area 7 - Hydrocarbons: Watermark Building

Approximately 0.15 to 0.2 m of concrete was present in boreholes A7: 14-05 and A7: 14-06 at surface and up to 0.15 m of asphalt followed by 0.15 m of road crush and clay was identified at surface in A7: 14-07. Beneath these surface layers, silt containing some sand and clay was encountered to a maximum depth of approximately 7.0 mbg. This layer was characterized as being soft and brown in colour, with mottling noted in A7: 14-05. In all three boreholes, this layer was followed by gravel to an approximate maximum depth of 11 mbg. The gravel contained coal inclusions, some clay, sand and silt, and was loose and black to brown in colour. Weathered bedrock was encountered beneath the gravel layer and extended beyond completion in all boreholes. The bedrock was characterized as being firm, friable, grey in colour, and dry in A7: 14-06 and A7: 14-07, and soft and wet in A7: 15-05, where it was encountered at a lesser depth (approximately 10 mbg, as opposed to 11 mbg in the other two boreholes).

No olfactory or visual evidence of petroleum hydrocarbons was identified within the boreholes advanced.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 21 of 47

6.0 Assessment Guidelines

6.1 Regulatory Framework

The analytical results for the Property are presented and discussed in context of the *Alberta Tier 1 and 2 Soil and Groundwater Remediation Guidelines,* as amended up to May 2014 (2014 Alberta Guidelines).

Under these guidelines, three management options are provided: Tier 1, Tier 2, and Exposure Control. Tier 1 guidelines are considered applicable for the majority of the sites in Alberta and are somewhat conservative as they have been developed for protection of the more sensitive land uses. Tier 2 guidelines allow for consideration of site-specific conditions through the modification of Tier 1 guidelines and/or by removing exposure pathways that may not be applicable to the site. The Tier 2 approach still provides the same level of protection to human and ecological receptor pathways as the Tier 1 approach, but must be done through the collection of more site-specific data. Exposure Control involves risk management through exposure barriers or administrative controls based on a site-specific risk management approach.

The above remediation criteria may be used as benchmarks to evaluate the need for further investigation, remediation or to guide in the establishment of land-use restrictions.

Surface soil guidelines for BTEX and PHC Fractions 1 through 4 must be applied up to and including a depth of 3.0 mbg. Subsoil guidelines for BTEX and PHC Fractions 1 through 4 must be applied below the depth of 3.0 mbg. The Tier 1 approach also allows the exclusion of the ecological direct soil contact pathway for soil and groundwater for PHC Fractions 1 through 4 for any land use below a depth of 3.0 mbg, while all other exposure pathways apply.

In some cases, a contaminated site may be located adjacent to a more sensitive land-use. In such instances, the guidelines for the more sensitive land-use would be considered applicable to the contaminated site within a 30-m buffer zone from the more sensitive land-use boundary. This is done as a means to protect receptors of the more sensitive land-use, specifically the vapour inhalation and groundwater direct ecological contact pathways.

Under the 2014 Alberta Guidelines, Tier 1 Guidelines for the protection of aquatic life assume a minimum separation of 10 m between the point that the concentration is measured and the discharge point. As such, the Tier 1 Guidelines only apply to soil or groundwater located at least 10 m from the nearest surface water body that is capable of supporting an aquatic ecosystem. Within this distance, a Tier 2 approach is required or in the case of groundwater guidelines, the corresponding surface water freshwater aquatic life guideline may be applied.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 22 of 47

For the PAH leachate analysis, results are presented and discussed in context of Alberta's *Environmental Quality Guidelines for Alberta Surface Waters*, released July 2014 (2014 Alberta EQS), specifically in context of the protection of aquatic life.

6.2 Land Use Assessment

The Property is situated within an area of predominately residential and parkland land use. The Property itself is currently zoned as a Metropolitan Recreation Zone (A), Public Parks Zone (AP), Direct Development Control Provision Zone (DC1 (12800)), and Public Utility Zone (PU).

The 2014 Alberta Guidelines have remediation criteria for both coarse and fine-grained soil. Four soil samples were submitted for grain-size analyses: A1: 14-19 at 2.0 mbg (silt material; 12.7% retained in a 75- μ m sieve), A6: 14-14 at 3.5 mbg (clay with some sand and some silt; 42.6% retained in a 75- μ m sieve), A6: 14-16 at 7.5 mbg (sand and gravel; 81.3% retained in a 75- μ m sieve), and A7: 14-05 at 7.5 mbg (gravel with some clay; 71.2% retained in a 75- μ m sieve). Based on the grain-size analysis, the sand/gravel that appear to be present on the Property at greater depths would be considered coarse grained, while the shallower clay/silt materials appear to be fine grained.

The closest water body to the Property is the North Saskatchewan River, which borders the Property to the south.

6.3 Water Well Search

A potable water well search was conducted through AESRD's Groundwater Information System to identify any water wells that are in the area. In total, six wells were identified within a 0.5-km radius of the Property. Four of the wells, installed in 2013, were listed for irrigation use and were registered to the Strathcona Community League/Garden. The other two wells were drilled in 1922 and 1926 and their use was not listed. The well completion depths ranged from 60.96 to 106.68 mbg, while water levels ranged from 1.22 to 74.37 mbg.

The exact location of the wells and whether they are still in use is unknown. A copy of the water well reconnaissance report is presented in Appendix F.
The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 23 of 47

6.4 Parameter Assessment

Based on the land-use assessment and grain-size analyses, the Property has been divided into different land use categories as follows:

- Residential/Parkland: in consideration of future unrestricted land use and/or close proximity of residential or parkland land uses, coarse-grained criteria for this land use has been applied to Areas 1, 2, and 6, as well as boreholes A5: 14-01 through 14-04;
- Commercial: the remaining Areas 3 and 7 will be evaluated against coarse-grained criteria for this land use, as they are located within areas utilized by EPCOR for the water treatment plant, which are not accessible to the general public; and
- 30-m Parkland Buffer: this will be applied to samples locations within 30 m of the publicly accessible walkway area that borders Area 3 to the south. Application of this buffer will bring into effect Residential/Parkland guideline values protective of vapour inhalation (soil and groundwater) as well as direct ecological contact (groundwater), which are active receptor pathways for PAHs and petroleum hydrocarbons.

Taking into consideration the close proximity of the North Saskatchewan River to Area 6, and more specifically the groundwater measured in Area 6, the Tier 1 Guidelines may not be protective of freshwater receptors. As such, the 2014 Alberta EQS for the protection of aquatic life for the groundwater have been provided as a comparison. For soils, a more detailed assessment may be necessary to derive site-specific risk assessment criteria.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 24 of 47

7.0 FIELD AND ANALYTICAL RESULTS

7.1 Soil Results

7.1.1 Area 1 - Mercury: Natural Gas Metering Station

7.1.1.1 Organic Vapour Concentrations

All soil samples were field screened for OVCs, the results of which are presented in Table 1. Soil OVCs ranged from non-detectable (<0.01 parts per million by volume - ppmv) in three samples to 1.2 ppmv in A1: 14-18 at 6.0 mbg.

7.1.1.2 Soil Analysis - Metals

Six soil samples were collected and submitted for laboratory analysis of metals. The analytical results are presented in Table 2 and Figure 3. All of the analysed parameter concentrations were below their respective recommended guidelines except for two samples. Boron concentrations in A1: 14-20 at 1.0 mbg (5.90 ppm) and 1.5 mbg (3.96 ppm) exceeded the guideline of 2 ppm.

7.1.2 Area 3 - PAHs, Hydrocarbons & Metals: Former Burn Pit

7.1.2.1 Organic Vapour Concentrations

All soil samples were field screened for OVCs, the results of which are presented in Table 1. Soil OVCs ranged from 1.8 ppmv in A3: 14-08 to 3,662 ppmv in A3: 14-12 at 3.8 mbg.

7.1.2.2 Soil Analysis - Polycyclic Aromatic Hydrocarbons

Twenty soil samples were collected and submitted for laboratory analysis of PAHs. The analytical results are presented in Table 3 and Figures 4 and 5. All but ten of the analysed parameter concentrations were below their respective recommended guidelines, as summarized below:

- Acenaphthene concentrations exceeded the guideline of 0.38 ppm in two samples, A3: 14-12 at 1.0 mbg (0.39 ppm) and at 1.5 mbg (0.43 ppm);
- Anthracene concentrations exceeded the guideline of 0.0056 ppm in 13 samples, with concentrations above guidelines ranging from 0.0057 ppm in A3: 14-12 at 4.5 mbg to 1.41 ppm in A3: 14-12 at 1.0 mbg;

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 25 of 47

- Fluoranthene concentrations exceeded the guideline of 0.039 ppm in 12 samples, with concentrations above guidelines ranging from 0.05 ppm in A3: 14-13 at 0.5 mbg to 1.28 ppm in A3: 14-12 at 1.0 mbg;
- Fluorene concentrations exceeded the guideline of 0.34 ppm in two samples, A3: 14-12 at 1.0 mbg (1.37 ppm) and 1.5 mbg (1.36 ppm);
- Naphthalene concentrations exceeded the guideline of 0.017 ppm in 13 samples, with concentrations above guidelines ranging from 0.022 ppm in A3: 14-11 at 2.0 mbg to 19.6 ppm in A3: 14-12 at 1.5 mbg;
- Phenanthrene concentrations exceeded the guideline of 0.061 ppm in 13 samples, with concentrations above guidelines ranging from 0.07 ppm in A3: 14-13 at 7.5 mbg to 13.3 ppm in A3: 14-12 at 1.0 mbg;
- Pyrene concentrations exceeded the guideline of 0.040 ppm in 13 samples, with concentrations above guidelines ranging from 0.06 ppm in A3: 14-13 at 0.5 mbg to 10.4 ppm in A3: 14-12 at 1.0 mbg;
- IACR for coarse-grained soils in A3: 14-10 at 1.0 mbg (1.02), A3: 14-11 at 2.0 mbg (1.02), and A3: 14-12 at 1.0 mbg (1.08) and 1.5 mbg (1.36) exceeded the guideline of 1;
- IACR for fine-grained soils in A3: 14-09 at 1.0 mbg (1.02), A3: 14-10 at 1.0 mbg (1.97), A3: 14-11 at 1.0 mbg (1.54) and 2.0 mbg (1.97), and A3: 14-12 at 1.0 mbg (2.08) and 1.5 mbg (2.64) exceeded the guideline of 1; and
- Benzo(a)anthracene concentrations exceeded the guideline of 0.083 ppm in six samples, with concentrations above guidelines ranging from 0.13 ppm in A3: 14-09 at 0.5 mbg to 1.66 ppm in A3: 14-12 at 1.0 mbg.

7.1.2.3 Soil Analysis - Petroleum Hydrocarbons

Thirteen soil samples were collected and submitted for laboratory analysis of BTEX and PHC Fractions 1 through 4 based on field observations and OVC readings. The analytical results are presented in Table 4 and Figure 4, and are summarized below:

- Benzene concentrations were below the laboratory's MDL of 0.005 ppm in all submitted soil samples, and were also below the guideline of 0.073/0.078 ppm;
- Toluene concentrations ranged from below the laboratory's MDL of 0.02 ppm in nine samples to 1.81 ppm in A3: 14-12 at 3.8 mbg which exceeded the guideline of 0.12 ppm;

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 26 of 47

- Ethylbenzene concentrations ranged from below the laboratory's MDL of 0.010 ppm in ten samples to 2.49 ppm in A3: 14-12 at 3.8 mbg, which exceeded the guideline of 0.21 ppm;
- Xylenes concentrations ranged from below the laboratory's MDL of 0.03 ppm in nine samples to 28.0 ppm in A3: 14-12 at 3.8 mbg, which exceeded the subsoil guideline of 16 ppm, applied based on the 30-m buffer;
- PHC Fraction 1 concentrations ranged from below the laboratory's MDL of 10 ppm in ten samples to 1,380 ppm in A3: 14-12 at 3.9 mbg. PHC Fraction 1 concentrations in A3: 14-12 at 3.8 mbg exceeded the subsoil guideline of 440 ppm and A3: 14-13 at 3.8 mbg (38 ppm) exceeded the subsoil guideline of 30 ppm, applied based on the 30-m buffer;
- PHC Fraction 2 concentrations ranged from below the laboratory's MDL of 50 ppm in ten samples to 4,540 ppm in A3: 14-12 at 3.8 mbg. PHC Fraction 2 concentrations in A3: 14-12 at 3.8 mbg exceeded the subsoil guideline of 520 and A3: 14-13 at 3.8 mbg (278 ppm) exceeded the subsoil guideline of 160 ppm, applied based on the 30-m buffer;
- PHC Fraction 3 concentrations ranged from below the laboratory's MDL of 50 ppm in seven samples to 21,000 ppm in A3: 14-12 at 3.8 mbg. PHC Fraction 3 concentrations in A3: 14-11 at 0.5 mbg (1,890 ppm) exceeded the surface soil guideline of 1,700 ppm and A3: 14-12 at 3.8 mbg (21,000 ppm) and A3: 14-13 at 3.8 mbg (10,400 ppm) both exceeded the subsoil guideline of 3,500 ppm; and
- PHC Fraction 4 concentrations ranged from below the laboratory's MDL of 100 ppm in eight samples to 20,000 ppm in A3: 14-12 at 3.8 mbg, which exceeded the subsoil guideline of 10,000 ppm.

7.1.2.4 Soil Analysis - Metals

Seventeen soil samples were collected and submitted for laboratory analysis of metals. The analytical results are presented in Table 5 and Figures 4 and 5. All of the analysed parameter concentrations were below their respective recommended guidelines except for boron and lead, which is summarized below:

- Boron concentrations were above the guideline of 2 ppm in seven samples, with concentrations above guidelines ranging from 2.61 ppm in A3: 14-11 at 2.0 mbg to 11.7 ppm in A3: 14-12 at 1.0 mbg; and
- Lead concentrations were above the guideline of 260 ppm in A3: 14-12 at 1.0 mbg (309 ppm) and at 1.5 mbg (1,160 ppm).

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 27 of 47

7.1.3 Area 5 - PAHs & Metals Across Site

7.1.3.1 Organic Vapour Concentrations

All soil samples were field screened for OVCs, the results of which are presented in Table 1. Soil OVCs ranged from 5.1 ppmv in A5: 14-01 at 7.5 mbg to 53.8 ppmv in A5: 14-02 at 4.5 mbg.

7.1.3.2 Soil Analysis - Polycyclic Aromatic Hydrocarbons

Eight soil samples were collected and submitted for laboratory analysis of PAHs. The analytical results are presented in Table 6 and Figure 6. All parameter concentrations were below their respective recommended guidelines except for anthracene in one sample. Anthracene concentrations in A1: 14-20 at 1.0 mbg (0.007 ppm) exceeded the guideline of 0.0056 ppm.

7.1.3.3 Soil Analysis - Metals

Four soil samples were collected and submitted for laboratory analysis of metals. The analytical results are presented in Table 7 and Figure 6. All parameter concentrations were below their respective recommended guidelines except for boron in two samples. Boron concentrations in A5: 14-02 at 2.5 mbg (2.87 ppm) and A5: 14-04 at 1.0 mbg (6.11 ppm) exceeded the guideline of 2 ppm.

7.1.4 Area 6 - PAHs & Metals: Pump House #1 and #2

7.1.4.1 Organic Vapour Concentrations

All soil samples were field screened for OVCs, the results of which are presented in Table 1. Soil OVCs ranged from 3.2 ppmv in A6: 14-17 at 11.0 mbg to 60.5 ppmv in A6: 14-15 at 10.5 mbg.

7.1.4.2 Soil Analysis - Polycyclic Aromatic Hydrocarbons

Eleven soil samples were collected and submitted for laboratory analysis of PAHs. The analytical results are presented in Table 8 and Figure 7. All of the analysed parameter concentrations were below their respective recommended guidelines except for seven samples, as summarized below:

Anthracene concentrations in A6: 14-14 at 4.0 mbg (0.078 ppm) and 5.0 mbg (0.102 ppm), A6: 14-15 at 3.0 mbg (0.153 ppm), A6: 14-16 at 1.5 mbg (0.058 ppm) and 2.5 mbg (0.061 ppm), and A6: 14-17 at 3.5 mbg (0.012 ppm) exceeded the guideline of 0.0056 ppm;

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 28 of 47

- Fluoranthene concentrations in A6: 14-14 at 4.0 mbg (0.31 ppm) and 5.0 mbg (0.19 ppm), A6: 14-15 at 3.0 mbg (0.52 ppm), A6: 14-16 at 1.5 mbg (0.19 ppm) and 2.5 mbg (0.4 ppm), and A6: 14-17 at 3.5 mbg (0.012 ppm) exceeded the guideline of 0.039 ppm;
- Naphthalene concentrations in A6: 14-14 at 4.0 mbg (0.024 ppm) and 5.0 mbg (0.027 ppm), A6: 14-15 at 3.0 mbg (0.034 ppm), A6: 14-16 at 1.5 mbg (0.075 ppm), and 2.5 and 4.5 mbg (0.019 ppm) exceeded the guideline of 0.017 ppm;
- Phenanthrene concentrations in A6: 14-14 at 4.0 and 5.0 mbg (0.24 ppm), A6: 14-15 at 3.0 mbg (0.39 ppm), A6: 14-16 at 1.5 mbg (0.17 ppm) and 2.5 mbg (0.15 ppm) exceeded the guideline of 0.061 ppm;
- Pyrene concentrations in A6: 14-14 at 4.0 mbg (0.29 ppm) and 5.0 mbg (0.21 ppm), A6: 14-15 at 3.0 mbg (0.52 ppm), A6: 14-16 at 1.5 mbg (0.15 ppm) and 2.5 mbg (0.46 ppm) exceeded the guideline of 0.040 ppm;
- IACR for fine-grained soils in A6: 14-14 at 4.0 mbg (1.23) and A6: 14-16 at 2.5 mbg (1.8) exceeded the guideline of 1. IACR in A6: 14-15 at 3.0 mbg (1.64) was also above the guideline. However, soils from this depth interval would be considered coarse grained. Therefore, the corresponding IACR would be (0.849), which is below 1; and
- Benzo(a)anthracene concentrations in A6: 14-14 at 4.0 mbg (0.16 ppm) and 5.0 mbg (0.11 ppm), A6: 14-15 at 3.0 mbg (0.26 ppm), and A6: 14-16 at 2.5 mbg (0.25 ppm) exceeded the guideline of 0.038 ppm.

7.1.4.3 Soil Analysis - Leachable Polycyclic Aromatic Hydrocarbons

Four soil samples (A6: 14-14 at 4.0 mbg, 14-15 at 3.0 mbg, 14-16 at 2.5 mbg, and 14-17 at 3.5 mbg) were collected and submitted for laboratory analysis of leachable PAHs based on the results of the PAH analysis. The analytical results are presented in Table 9. All of the analysed parameter concentrations were below their respective recommended guidelines for the protection of freshwater aquatic life.

7.1.4.4 Soil Analysis - Metals

Thirteen soil samples were collected and submitted for laboratory analysis of metals and nine samples for pH. The analytical results are presented in Table 10 and Figure 7. Analysed parameter concentrations were above their respective recommended guidelines except for one sample, as summarized below:

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 29 of 47

- pH in A6: 14-17 at 6.5 mbg was 5.7, which is lower than the recommended range of 6 8.5;
- Arsenic concentrations in A6: 14-16 at 1.5 mbg (41 ppm) exceeded the guideline of 17 ppm;
- Barium concentrations in A6: 14-15 at 3.0 mbg (856 ppm) and 6.0 mbg (702 ppm), A6: 14-16 at 1.5 mbg (1,630 ppm), 2.0 mbg (654 ppm), and 2.5 mbg (642 ppm), and A6: 14-17 at 5.5 mbg (1,460 ppm), and 6.5 mbg (1,750 ppm) exceeded the guideline of 500 ppm;
- Boron concentrations in all samples, excluding A6: 14-17 at 8.0 mbg, exceeded the guideline of 2 ppm. Concentrations in exceedance ranged from 9.56 ppm in A6: 14-17 at 3.5 mbg to 37.5 ppm in A6: 14-17 at 5.5 mbg;
- Copper concentrations in A6: 14-16 at 1.5 mbg (79.6 ppm) exceeded the guideline of 63 ppm;
- Lead concentrations in A6: 14-16 at 1.5 mbg (148 ppm) exceeded the guideline of 140 ppm;
- Molybdenum concentrations in A6: 14-16 at 1.5 mbg (4.5 ppm) and A6: 14-17 at 5.5 mbg (8.2 ppm), exceeded the guideline of 4 ppm; and
- Selenium concentrations in A6: 14-17 at 5.5 mbg (1.2 ppm) exceeded the guideline of 1 ppm.

A cross-section of the borehole logs for Area 6, depicting the location of the fill materials, is provided in Figure 8.

7.1.5 Area 7 - Hydrocarbons: Watermark Building

7.1.5.1 Organic Vapour Concentrations

All soil samples were field screened for OVCs, the results of which are presented in Table 1. Soil OVCs ranged from 2.4 ppmv in A7: 14-07 at 12.1 mbg to 51.8 ppmv in A7: 14-07 at 0.8 mbg.

7.1.5.2 Soil Analysis - Petroleum Hydrocarbons

Six soil samples were collected and submitted for laboratory analysis of BTEX and PHC Fractions 1 through 4 based on field observations and OVC readings. All parameter concentrations were below

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 30 of 47

their respective laboratory MDLs or guidelines. The analytical results are presented in Table 11, and borehole locations are provided in Figure 9.

A copy of the final signed soil laboratory reports is included in Appendix G.

7.2 Groundwater Results

7.2.1 Groundwater Field Monitoring

Nichols Environmental conducted a groundwater monitoring and sampling program on the Property on November 20 and 21, 2014, as well as additional monitoring/sampling on December 18, 2014. Groundwater monitoring well completion data and field monitoring results are presented in Table 12, and are summarized as follows:

- Of the previously existing monitoring well network proposed for monitoring/sampling (Area 3), six monitoring wells were identified (MW1, MW108, MW109, MW201, MW202, and MW203). Of these, only MW203 contained enough water for sampling;
- Well headspace OVCs ranged from non-detectable (<0.1 ppmv) in multiple monitoring wells to 0.6 ppmv in monitoring well MW1 in Area 3;
- The depth to groundwater ranged from 7.31 m from top of casting (mTOC) in A5: 14-01 to 10.55 mTOC in A6: 14-15. Average depth to groundwater of the wells monitored was 8.93 mTOC and the average elevation was 615.18 m;
- Groundwater flow on the Property appears to be to the southeast under a gradient of 0.006 m/m (Figure 10); and
- No NAPL was reported in any of the monitoring wells at the time of inspection.

If sufficient volumes of groundwater were available in their respective wells, groundwater wells sampled during the November 20 and 21, 2014 sampling program were monitored for in situ parameters, following protocols previously outlined in Section 4.3. Groundwater quality data are presented in Table 13 and are summarized below:

- pH ranged from 6.79 (A1: 14-18) to 7.06 (A7: 14-06);
- ORP ranged from 39 mV (A1: 14-18) to 195 mV (C7);
- DO concentrations ranged from 0.58 ppm (C1) to 5.77 ppm (A7: 14-06);

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 31 of 47

- EC ranged from 452.0 µS/cm (A5: 14-01) to 2,921 µS/cm (A1: 14-18); and
- Temperature ranged from 7.34 °C (A3: 14-09) to 10.47 °C (A7: 14-05).
- 7.2.2 Area 1 Mercury: Natural Gas Metering Station

7.2.2.1 Groundwater Analyses - Dissolved Metals

One groundwater sample was collected from A1: 14-18 and submitted for laboratory analysis of dissolved metals. The analytical results are presented in Table 14 and Figure 3. All of the analysed parameter concentrations were below their respective recommended guidelines except for manganese (0.756 ppm, guideline of 0.05 ppm) and selenium (0.0011 ppm, guideline of 0.001 ppm).

7.2.3 Area 2 - Creosote: Former Reactivator

7.2.3.1 Groundwater Analyses - PAHs, Dibenzofuran & PCP

Groundwater samples were collected from monitoring wells C1, C6, and C7 within Area 2 (three samples in total) and were submitted for laboratory analysis of PAHs, dibenzofuran, and PCP. The analytical results are presented in Tables 15 and 16 and Figure 11. All of the analyzed parameter concentrations were below their respective laboratory MDLs or guidelines.

7.2.4 Area 3 - PAHs, Hydrocarbons & Metals: Former Burn Pit

7.2.4.1 Groundwater Analyses - PAHs

Groundwater samples were collected from monitoring wells A3: 14-09 and MW203 within Area 3 (two samples total) and were submitted for laboratory analysis of PAHs. The analytical results are presented in Table 15. All of the analyzed parameter concentrations were below their respective MDLs or guidelines.

7.2.4.2 Groundwater Analyses - Petroleum Hydrocarbons

Groundwater samples were collected from monitoring wells A3: 14-09 and MW203 within Area 3 (two samples total) and were submitted for laboratory analysis of BTEX and PHC Fractions 1 to 3+. The analytical results are presented in Table 17. All of the analyzed parameter concentrations were below their respective MDLs or guidelines (where applicable).

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 32 of 47

7.2.4.3 Groundwater Analyses - Dissolved Metals

Groundwater samples were collected from monitoring wells A3: 14-09 and MW203 within Area 3 (two samples total) and were submitted for laboratory analysis of dissolved metals. The analytical results are presented in Table 14 and Figure 5. All of the analyzed parameter concentrations were below their respective guidelines, with the exception of manganese (0.548 ppm) and zinc (0.062 ppm) in A3: 14-09, which exceeded their respective guidelines of 0.05 and 0.03 ppm.

7.2.4.4 Groundwater Analyses - Routine Parameters

Groundwater samples were collected from monitoring wells A3: 14-09 and MW203 within Area 3 (two samples total) and were submitted for laboratory analysis of routine parameters. The analytical results are presented in Table 18 and Figure 5. All of the analyzed parameter concentrations were below their respective guidelines, with the exception of total dissolved solids ((TDS) 540 ppm) in MW203 and chloride (159 ppm) in A3: 14-09.

7.2.5 Area 5 - PAHs & Metals Across Site

7.2.5.1 Groundwater Analyses - PAHs

Groundwater samples were collected from monitoring well A5: 14-01 within Area 5 and were submitted for laboratory analysis of PAHs. The analytical results are presented in Table 15. All of the analyzed parameter concentrations were below their respective MDLs or guidelines.

7.2.5.2 Groundwater Analyses - Dissolved Metals

Groundwater samples were collected from monitoring well A5: 14-01 within Area 5 and were submitted for laboratory analysis of dissolved metals. The analytical results are presented in Table 14 and Figure 6. All of the analyzed parameter concentrations were below their respective guidelines, with the exception of manganese (0.330 ppm) which exceeded the guideline of 0.05 ppm.

7.2.5.3 Groundwater Analyses - Routine Parameters

Groundwater samples were collected from monitoring well A5: 14-01 within Area 5 and were submitted for laboratory analysis of routine parameters. The analytical results are presented in Table 18. All of the analyzed parameter concentrations were below their respective guidelines.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 33 of 47

7.2.6 Area 6 - PAHs & Metals: Pump House #1 and #2

7.2.6.1 Groundwater Analyses - Polycyclic Aromatic Hydrocarbons

Groundwater samples were collected from monitoring wells A6: 14-15 and A6: 14-17 within Area 6 (two samples total) and were submitted for laboratory analysis of PAHs. The analytical results are presented in Table 15 and Figure 7. All of the analyzed parameter concentrations were below their respective MDLs or guidelines, except for the following:

- Anthracene concentrations in A6: 14-15 (0.000035 ppm) exceeded the guideline of 0.000012 ppm;
- Fluoranthene concentrations in A6: 14-15 (0.00009 ppm) exceeded the guideline of 0.00004 ppm;
- Pyrene concentrations in A6: 14-15 (0.00010 ppm) and A6: 14-17 (0.00004 ppm) exceeded the guideline of 0.000025 ppm;
- Carcinogenic PAHs (as B(a)P Total Potency Equivalent (TPE)) in A6: 14-15 (0.00008 ppm) and A6: 14-17 (0.00002 ppm) exceeded the guideline of 0.00001 ppm;
- Benzo(a)anthracene concentrations in A6: 14-15 (0.00006 ppm) exceeded the guideline of 0.000018 ppm; and
- Benzo(a)pyrene concentrations in A6: 14-15 (0.000072 ppm) and A6: 14-17 (0.000020 ppm) exceeded the guideline of 0.000015 ppm.

7.2.6.2 Groundwater Analyses - Dissolved Metals

Groundwater samples were collected from monitoring wells A6: 14-15 and A6: 14-17 within Area 6 (two samples total) and were submitted for laboratory analysis of dissolved metals. The analytical results are presented in Table 14 and Figure 7. All of the analyzed parameter concentrations were below their respective MDLs or guidelines, except for manganese. Manganese concentrations in both monitoring wells (0.344 ppm and 1.29 ppm, respectively) exceeded the guideline of 0.05 ppm.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 34 of 47

7.2.7 Area 7 - Hydrocarbons: Watermark Building

7.2.7.1 Groundwater Analyses - Petroleum Hydrocarbons

Three groundwater samples were collected and submitted for laboratory analysis of BTEX and PHC Fractions 1 through 3+. All parameter concentrations were below their respective laboratory MDLs or guidelines (where applicable). The analytical results are presented in Table 17.

A copy of the final signed groundwater laboratory reports is included in Appendix G.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 35 of 47

8.0 CONCLUSIONS AND RECOMMENDATIONS

Nichols Environmental has completed a Phase II Environmental Site Assessment for the Property located at 9469 Rossdale Road NW & 10155 - 96th Avenue NW in Edmonton, Alberta. The field and analytical results are summarized as follows:

8.1 Area 1 - Mercury: Natural Gas Metering Station

- On November 19, 2014, three boreholes (one of which was completed as a groundwater monitoring well) were advanced within/surrounding the footprint of a former excavation in order to assess the current soil and groundwater conditions with relation to mercury;
- General soil lithology identified a sand and gravel fill, which was followed by silt containing some clay and some sand. The silt was followed by sand, which extended beyond borehole completion and was wet at approximately 8.2 mbg. Coal was encountered in the sand at approximately 7.5 mbg and gravel at approximately 9.1 mbg;
- Concentrations of boron in soil above the guideline of 2 ppm were identified in A1: 14-20 at approximately 1.0 mbg (5.90 ppm) and 1.5 mbg (3.96 ppm). Both samples were from a silt material, which was consistent with the other three boreholes completed in Area 1;
- Concentrations of manganese and selenium in groundwater above their respective guidelines were identified in monitoring well A1: 14-18. Concentrations of manganese were similar to those identified at other locations throughout the Property and selenium concentrations (0.0011 ppm) marginally exceeded the guideline of 0.001 ppm. Neither is believed to be a result of anthropogenic activities; and
- Mercury concentrations were below guidelines in all of the soil samples submitted. Those samples which were submitted were based on field evidence and an estimate of the final depths of the former excavation and/or periphery of the former excavation.

Based on the results of the investigation, there do not appear to be any residual mercury impacts present within the soil or groundwater at the locations tested. Nichols Environmental has no further recommendations for assessment with regards to mercury for Area 1 at this time.

The identified concentrations of boron in the soil could be addressed through a risk assessment and subsequently risk-managed. No other metals parameter concentrations exceeded the guidelines within the locations tested in Area 1. The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 36 of 47

- 8.2 Area 2 Creosote: Former Reactivator
- On November 20, 2014, Nichols Environmental mobilized to the Property to monitor and sample previously existing monitoring wells C1, C6, and C7 within the former reactivator area for PAHs, PCP, and dibenzofuran which have historically been identified in wells C1 (PCP) and C6 (dibenzofuran);
- Average depth to groundwater was approximately 8.57 mTOC and the average elevation was 616.34 m. No NAPL was identified in any of the three monitoring wells at the time of monitoring; and
- Concentrations of the measured PAH and dibenzofuran parameters as well as PCP were either below their laboratory MDLs or below their respective guidelines (where applicable). However, detectable concentrations of select dioxin parameters were identified in monitoring well C6 and select dibenzofuran parameters were identified in monitoring wells C1 and C6.

Based on the results of the investigation, there do not appear to be any residual PAH impacts (above guidelines) present within the groundwater at the locations tested. Nichols Environmental has no further recommendations for assessment with regards to the creosote-treated piles within the former reactivator site in Area 2 at this time and as long as the site remains undisturbed. Further assessment may be required in the event of development of this area, as there is documentation that indicates there are PAH-impacted soils present in this area.

- 8.3 Area 3 PAHs, Hydrocarbons & Metals: Former Burn Pit
- On October 30, 2014, six boreholes (one of which was completed as a groundwater monitoring well) were advanced to the south of the Watermark Building in order to delineate hydrocarbon, metals, and PAH-impacted soils associated with former burn pits that had historically been utilized by Fire Services. Based on investigations in the early 2000s, the impacts had been confirmed at 2.6 mbg south of the Watermark Building and at 7.6 mbg further to the south of this location. The two areas are believed to be two separate plumes;
- General soil lithology identified clay fill material or a mix of sand, silt, and clay fill materials in five of the six boreholes. Debris such as wood, concrete, and/or brick was identified in these fill materials in three of the six boreholes, at depths ranging from below surface to approximately 5.7 mbg. These fill materials were typically followed by silt containing some clay and some sand, with starting depths ranging from approximately 1.0 to 5.7 mbg and extending to a maximum depth of approximately 7.6 mbg. This silt was followed by a sand and gravel layer, then weathered bedrock;

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 37 of 47

- Field observations noted a hydrocarbon odour within the clay/sand fill materials of A3: 14-09 from approximately 0.5 to 0.9 mbg and 2.1 to 2.4 mbg, in A3: 14-12 from beneath the asphalt to approximately 4.7 mbg within both a clay fill then silt layer, and in A3: 14-13 at approximately 3.6 mbg within a clay layer. A hydrocarbon odour was also noted in the bedrock sample collected from A3: 14-12, though it is suspected this may be a result of smearing as the auger was pulled to surface;
- Soil samples were submitted based on field screening and observations as well as previously documented depths of impact. A number of PAH parameter concentrations (acenaphthene, anthracene, fluoranthene, fluorene, naphthalene, phenanthrene, pyrene, and benzo(a)anthracene) were identified above guidelines in the submitted samples from all boreholes at depths ranging from 0.5 mbg (A3: 14-08, 14-09 and 14-13) to 10.5 mbg (A3: 14-12). Vertical delineation of PAHs was achieved in two of the boreholes at approximately 2.5 to 3.1 mbg, and the PAHs are believed to be related to the identified fill materials;
- Petroleum hydrocarbon concentrations above guidelines were identified within three of the six boreholes, one of which (A3: 14-12) was advanced within the plume in order to confirm vertical depth of impacts. Based on the analytical results, petroleum hydrocarbon impacts were confirmed at approximately 3.8 mbg, and based on field observations is anticipated to extend to the end of the silt layer at approximately 6.1 mbg. This is further than the previously indicated 2.8 mbg confirmed depth of impacts. The remaining two boreholes were present to the west (A3: 14-11) and south/southeast (A3: 14-13) of the known contaminant plume, the latter of the two being further removed. The location to the west identified impacts within the clay fill at approximately 0.5 mbg and is believed to be restricted to these materials to a depth of approximately 1.6 mbg as based on field observations. The location to the south/southeast identified impacts at approximately 3.8 mbg, with confirmed closure at approximately 5.3 mbg. These impacts were also within a clay fill material that extends to approximately 5.7 mbg at this location;
 - Of the metals parameters analyzed, boron concentrations in five boreholes and lead concentrations in one of the boreholes exceeded their applicable guidelines. Based on field observations, the identified boron concentrations may be related to the fill materials. Lead concentrations above guidelines were only identified at approximately 1.0 and 1.5 mbg within A3: 14-12 which was advanced within the known contaminant plume. Lead concentrations above guidelines were delineated at approximately 3.1 mbg;
- On November 20/21, 2014 all accessible monitoring wells within Area 3 were monitored (six total). Of these, only one monitoring well plus the newly installed monitoring well contained enough water for sampling. No NAPL was identified in either of the two monitoring wells at the time of monitoring; and

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 38 of 47

 Concentrations of manganese, zinc, and chloride were identified above guidelines in the newly installed groundwater monitoring well and TDS in the previously existing well (MW203). All PAH and petroleum hydrocarbon concentrations were below their respective guidelines, where applicable. The identified parameters are not anticipated to be indicative of impacts arising from anthropogenic sources.

Based on the results of the investigation, PAH and petroleum hydrocarbon-impacted soils appear to extend to a confirmed depth of at least 4.5 mbg within the northern contaminant plume, as based on analytical results and field observations in A3: 14-12. The estimated plume of petroleum hydrocarbon impacts is approximately 560 m², based on current and historical investigations. However, closure has not been achieved to the west due to the presence of a utility corridor. The north and south hydrocarbon contaminant plumes do not appear to be connected, as observations and analytical from two of the boreholes advanced to the south of the contaminant plume did not indicate the presence of petroleum hydrocarbons. However, PAH-impacted fill materials were noted, and based on a review of previous borehole logs, similar fill materials may be present further south toward the walking trail that borders this area. The highest concentrations of PAHs were identified within the northern contaminant plume along with notable concentrations of lead, both of which are likely related to the former burning activities.

As discussed in Section 1.1.3, during the course of the assessment further documentation regarding potential petroleum hydrocarbon impacts to the west of the northern contaminant plume was identified, from approximately 1.8 to 4.0 mbg based on field observations. No previous drilling has been conducted within this area. The source of the contamination is unknown at this time, and it is unknown if the identified impacts are related and/or connected to the existing plumes.

The petroleum hydrocarbon parameters identified during this assessment at the location of A3: 14-12 within the known contaminant plume are present in concentrations that would exceed guidelines protective of the DUA, FWAL receptors, vapour inhalation, and/or management limits. Taking this into consideration, remediation of these identified petroleum hydrocarbon impacts in the northern plume would be recommended. In the interim, a soil management plan should also be considered for any activities that may require ground disturbance in this area to ensure that the soils are appropriately managed and measures are in place to protect workers. Consideration should also be given to further investigative drilling in the southwest and southeast corners of this area, where petroleum hydrocarbon impacts were identified in 2010 and through this most recent drilling program, respectively.

With regards to the identified PAHs, the impacts appear to be widespread through fill materials within this area and would primarily pose a risk to FWAL receptors. The elevated PAHs identified near surface in association with the hydrocarbon impacts are likely related to former burn activities, and remediation of this area is recommended. The PAHs at depth within the northern plume may require risk assessment. Due to the widespread nature of the remaining fill materials beyond the

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 39 of 47

northern plume, consideration could be given to conducting a risk assessment to determine what level of risk the PAHs pose to the applicable receptors, should the soils remain in place.

8.4 Area 4 - TCE: Former Hazardous Materials Storage

In 2010, Thurber had completed a Phase II ESA of the Rossdale Power Generating Station which included the assessment of the former hazardous material storage area south of the former carpenters shop on the Property. The investigation had identified TCE concentrations greater than the applicable guidelines at one location at a depth of approximately 0 to 0.2 mbg in a fine-grained fill material.

In 2013, a test pitting program was subsequently completed by Thurber within this general area in anticipation of construction of a new building. In total, ten test pits were advanced, three of which were within the vicinity of the location where the TCE had been identified. Samples were submitted from these three test pits at approximately 0.1 mbg for testing of VOCs, which did not identify any parameter concentrations above guidelines. However, the test pitting program confirmed that disturbed soils within this area were impacted with PAHs, metals, or petroleum hydrocarbons (one test pit). Based on the result of the assessments completed, Thurber concluded that the materials required for removal for construction of the new building would require disposal through a Class II Landfill and that measures would be required to help manage potential vapour migration and/or recontamination from the surrounding soils.

In discussion with EPCOR, no further documentation was identified regarding disposal of the soils, confirmation testing following removal of the soils, or any mitigation measures. Given the nature of TCE (DNAPL), and that soils from below 0.2 mbg were not tested within this area for TCE, delineation may not have been achieved. It should be confirmed with EPCOR the management strategy that was in place to address the impacted soils within this area during construction activities as well as any mitigation that was put in place.

8.5 Area 5 - PAHs & Metals Across Site

On October 27, 2014, four boreholes (two of which were completed as a groundwater monitoring wells) were advanced on northern portions of the Property in order to establish background comparison locations as well as to determine if fill materials identified in previous investigations were present extending north. Previous investigations have identified impacted fill materials ranging from surface to 3.8 mbg or greater for metals and from surface to 2.9 mbg for PAHs, though one area was confirmed to have PAH-impacted soil at approximately 7.6 mbg in the vicinity of the Watermark Building (likely associated with historical burn activities);

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 40 of 47

- Up to four additional drilling locations had been proposed throughout the Property to confirm the presence of fill materials. Based on potential utility conflicts or construction within these areas and documentation identified through the course of the assessment which confirmed the presence of fill materials, these locations were not completed. The one location to the west of the power plant may require assessment at a time that the area is not under construction;
- General soil lithology in the boreholes advanced identified variations of clay, silty clay, and/or silt near surface, extending to a maximum depth of approximately 3.0 mbg. Of these boreholes, wood fragments were noted in A5: 14-03. Beneath these initial layers was a fine-grained, loose, light brown or salt-and-pepper-coloured, dry sand. In the two installed monitoring wells the sand was followed by either a clayey silt layer or silt, then clay. No evidence of fill materials characteristic of previous investigations was identified in any of the four boreholes;
- Fill materials were also identified at other drilling locations advanced on the Property during the course of the Phase II ESA. These included materials in Area 3, where a clay, silt, and/or sand mix of fill materials was identified to a maximum depth of 5.7 mbg, and Area 6, where debris was also encountered in three of the four boreholes at depths ranging from approximately 1.3 to 4.6 mbg;
- Soil samples were submitted based on field screening and observations as well as previously documented depths of fill materials from across the Property, including the submission of select samples from Area 1 for PAH analysis. Of the analyzed samples, anthracene concentrations above guidelines were identified at approximately 1.0 mbg in A1: 14-20, but were delineated at approximately 1.5 mbg. Concentrations of boron above guidelines were also identified in A5: 14-02 and 14-04 at approximately 2.5 and 1.0 mbg, respectively;
- On November 20/21, 2014, the two background monitoring wells installed as a part of the scope of work for Area 5 were monitored and sampled, one of which was determined to have insufficient amounts of water for sampling. No NAPL was identified in either of the two monitoring wells at the time of monitoring; and
- Concentrations of manganese were identified above guidelines in the background monitoring well in Area 5 (A5: 14-01) All other PAH and routine parameter concentrations were below their respective guidelines, where applicable.

Based on the results of the investigation, fill materials do not appear to be widespread in the northern portions of the Property where drilling was conducted. However, it appears to be widespread to variable depths on the southern portion of the Property in association with the water

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 41 of 47

treatment plant and power plant infrastructure. The provided Figure 6 outlines historical drilling locations where either PAH and/or metals-impacted fil materials have been identified, as well as select locations where just fill materials have been identified through other assessment work discussed in Section 1.1.5.

Given the scope of the potential fill materials on the Property, traditional remediation methods such as excavation would not be cost effective or feasible. Consideration could be given to conducting a risk assessment to determine what level of risk the identified PAHs/metals pose to the applicable receptors. In the interim, a soil management plan should also be considered for any activities that may require ground disturbance where fill materials have been identified to ensure that the soils are appropriately managed.

Potential PAH/metals impacts may also remain present in association with former rail lines adjacent to and/or formerly present on the Property as well as use of any creosote-treated timber piles for the buildings (including the confirmed creosote-treated piles beneath the power plant).

- 8.6 Area 6 PAHs & Metals: Pump House #1 and #2
- On November 3, 2014, four boreholes (including two monitoring wells) were advanced between Pump House #1 and #2 to the south of the power plant building in order to delineate the extent of previously identified bottom ash within this area;
- General soil lithology identified a mix of clay, silt, and sand fill layers extending to depths of approximately 6.6 to 7.5 mbg. Within these layers, debris such as brick, masonry, concrete, and glass were noted in three of the four boreholes from depths ranging from 1.3 to 4.6 mbg. A coal or ash-like material containing slag (presumably bottom ash) was identified in one of the boreholes (A6: 14-16) from approximately 2.5 to 4.2 mbg. A sand with a high coal content was also noted in a second borehole (A6: 14-17) from approximately 5.1 to 6.6 mbg. Underlying soils are believed to be native to the area as they consisted of sand or sand/gravel followed by weathered bedrock;
- Soil samples were submitted based on field observations and previously documented depths of impacts. A number of PAH parameter concentrations (anthracene, fluoranthene, naphthalene, phenanthrene, pyrene, and benzo(a)anthracene) were identified above guidelines in the submitted samples from all boreholes at depths ranging from 1.5 mbg (A6: 14-16) to 5.0 mbg (A6: 14-14). Leachate analysis (via SPLP) was completed for select samples, the results for which indicate that there is limited risk associated with PAH parameters leaching from the soil due to precipitation;
- A number of metals parameter concentrations (arsenic, barium, boron, copper, lead, molybdenum, and selenium) were also identified above guidelines in the submitted

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 42 of 47

samples from all boreholes at depths ranging from 1.5 mbg (A6: 14-16) to 6.5 mbg (A6: 14-17). The elevated concentrations of barium and boron are likely related to the identified high coal content and bottom ash, while the identified debris may be a source of the identified arsenic, copper, and lead in one of the boreholes (A6: 14-16);

- Average depth to groundwater was approximately 10.44 mTOC and the average elevation was 615.54 m. No NAPL was identified in either of the two monitoring wells at the time of monitoring; and
- PAH parameter concentrations (anthracene, fluoranthene, pyrene, benzo(a)anthracene, and benzo(a)pyrene) were identified above guidelines in one or both of the monitoring wells sampled. With regards to metals, the groundwater does not appear to have been impacted.

Based on the results of the investigation, the fill materials identified between the two pump houses appear to have been impacted from former dumping activities in this area of bottom ash and other debris. PAH concentrations in excess of the guidelines were also identified in groundwater samples from both monitoring wells. Removal of the soils within this area would likely not be feasible due to cost, location, and volume for removal. Should the area be remaining undisturbed, consideration could be given to completing a risk assessment to further define the level of risk the identified metals and PAHs pose, should the soils remain in place.

Continued monitoring and sampling of the two installed groundwater monitoring wells are also recommended to document any seasonal fluctuations in the identified concentrations. Further assessment of this area using the 2014 Alberta Tier 2 Guidelines should also be completed due to the close proximity of the identified impacts to the North Saskatchewan River.

- 8.7 Area 7 Hydrocarbons: Watermark Building
- On October 28, 2014, three boreholes and associated monitoring wells were installed within the vicinity of a former diesel UST to the east of the Watermark Building. The boreholes/monitoring wells were completed in order to assess current soil and groundwater conditions with respect to petroleum hydrocarbons to confirm if the area has been adequately remediated;
 - General soil lithology identified a silt layer with some sand and clay beneath the initial surface layers in all boreholes, which extended to a maximum depth of approximately 7 mbg. Below this layer was gravel to a maximum depth of approximately 11 mbg followed by weathered bedrock. No olfactory or visual evidence of petroleum hydrocarbons was identified within the boreholes advanced;

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 43 of 47

- Soil samples were submitted based on field vapour readings and previously documented depths of impacts. Petroleum hydrocarbon parameter concentrations were below guidelines in all of the submitted soil samples;
- Average depth to groundwater was approximately 8.61 mTOC and the average elevation was 614.33 m. No NAPL was identified in any of the three monitoring wells at the time of monitoring; and
- Petroleum hydrocarbon parameter concentrations were below guidelines (where applicable) in the groundwater samples that were submitted from each monitoring well.

Based on the results of the investigation, there do not appear to be any residual petroleum hydrocarbon impacts present within the soil or groundwater at the locations tested. Nichols Environmental has no further recommendations for assessment with regards to petroleum hydrocarbons at this time for Area 7, as the remediation work that was completed appears to have been effective.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 44 of 47

9.0 References

Throughout this project, the following resources were used:

- Abacus Datagraphics Ltd. AbaData: http://www.abacusdatagraphics.com/;
- Alberta Environment and Sustainable Resource Development. 2014. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land and Forestry Policy Branch, Policy Division;
- Alberta Environment and Sustainable Resource Development. Alberta Water Well Information Database:

http://www.environment.alberta.ca/01314.html;

- Alberta One-Call;
- Dig Shaw;
- EPCOR;
- Google Earth;
- Government of Alberta, Spatial Information System (Spin 2): https://alta.registries.gov.ab.ca/spinii/logon.aspx;
- Maverick Inspections Ltd.; and
- The City of Edmonton Maps, Zoning Detail: http://maps.edmonton.ca/.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 45 of 47

10.0 QUALIFICATIONS AND LIMITATIONS

10.1 Qualifications

Mr. Hans Bakker, B.Sc., Geol.I.T., coordinated all aspects of the project, including completion of the field program.

Mrs. Tawnya Anderson, B.Sc., EP, coordinated all aspects of the project, including completion of the final report and provided project management for the field program

Mr. Rob Dickie, P.Geol., R.E.T., EP, provided the senior project management and peer review of the entire project.

10.2 Limitations

In conducting the Phase II Environmental Site Assessment at the Property and in rendering our conclusions on the potential presence or level of contamination, Nichols Environmental (Canada) Ltd. gives the benefit of its best judgment based on its experience and in accordance with generally accepted professional standards for this type of investigation. Our conclusions are limited by the following:

- Nichols Environmental spent only a limited amount of time on the Property. Thus, any activities conducted on the Property following the site inspection that Nichols Environmental is not aware of may have an impact on the conclusions and recommendations presented;
- The sampling areas were limited to the sample locations outlined in Figures 3 through 11; and
- It was not possible to test for all forms of contamination at each and every location in the study areas. Although site-specific locations were used during testing, it is our opinion that the information obtained is representative of the conditions at the time the assessment was conducted.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 46 of 47

This report is intended to provide information to reduce, but not necessarily eliminate, uncertainty regarding the potential for contamination of a property. This report has been prepared for the exclusive use of The City of Edmonton for the purpose of assessing the current environmental conditions that may be present at the Property. Any uses which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. Nichols Environmental (Canada) Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The City of Edmonton Phase II Environmental Site Assessment - Rossdale Lands 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 47 of 47

11.0 CLOSURE

We trust this meets with your current requirements. Should you have any questions or concerns, please contact the undersigned at your convenience.

Yours truly, NICHOLS ENVIRONMENTAL (CANADA) LTD. APEGA PERMIT TO PRACTICE NO. P6730

Tawnya Anderson, B.Sc., EP Senior Project Manager

Reviewed by:

R.W. (Rob) Dickie, P.Geol., R.E.T., EP President

Distribution

Hard Copy PDF six via mail/courier 2 CD ROM/tami.dolen@edmonton.ca The City of Edmonton Ms. Tami Dolen FIGURES

NICHOLS NICHOLS <td< th=""></td<>
-15 0 15 30 45 60 75m
The City of Edmonton
Phase II ESA 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta
DRAWING TITLE Areas of Concern
BASE/SITE PLAN PROVIDED BY Nichols Environmental (Canada) Ltd.
REVISION DATE February 2015
SCALE APPRIVED 1:2,400 TA/KK
PRDJECT ND. 14-214-CRD

Reference image scale 1:9,000

10.5	1	242	
H		3.4.4	
	als lin		
A	1: 14-20	1	
ov-2014	1.0 m _{Si}	1.5 m	
n (HWS)	5.90	3.96	
ury	0.04	0.04	
-		1	
	1: 14-19	1.E.m	
ov-2014	1.0 m Sand/Gravel	1.5 m Silt	
n (HWS)	0.44	0.69	
ury	0.39	0.06	
	1: 14-18 1.0 m	1.5 m	
n (HWS)	1.43	0.78	
cury	3.8	0.06	
Indwater		v-2014	
ganese	- Made 1	756	
cury		00005	
nium	0.0	011	
	No.		

	ta Tier 1
Boron (HWS)	2
Mercury	6.6
Groundwater	
Manganese	0.05
Mercury	0.000005
Selenium	0.001
-5 0 5	10 15 n
-5 0 5 CLIENT	10 15m
CLIENT PROJECT 9469 Rossdale I 10155 - 96th Av	The City of Edmonton ESA Road NW & venue NW
CLIENT PROJECT 9469 Rossdale I 10155 - 96th A Edmonton,	The City of Edmonton ESA Road NW & venue NW
CLIENT PROJECT 9469 Rossdale I 10155 - 96th Av	The City of Edmonton ESA Road NW & venue NW Alberta
CLIENT PROJECT PAG9 Rossdale I 9469 Rossdale I 10155 - 96th A Edmonton, DRAVING TITLE Area 1 D Soil & Groundv BASE/SITE PLAN PROV Nichols Environment	The City of Edmonton ESA Road NW & venue NW Alberta etail, vater Data IDED BY al (Canada) Ltd.
CLIENT PROJECT PASE II 9469 Rossdale I 10155 - 96th A Edmonton, DRAVING TITLE Area 1 D Soil & Groundv Nichols Environment REVISION DATE February	The City of Edmonton ESA Road NW & venue NW Alberta etail, vater Data IDED BY al (Canada) Ltd.
CLIENT PROJECT PROJECT 9469 Rossdale I 10155 - 96th A Edmonton, DRAVING TITLE Area 1 D Soil & Groundv BASE/SITE PLAN PROV Nichols Environment REVISION DATE February SCALE	he City of Edmonton ESA Road NW & Venue NW Alberta etail, vater Data IDED BY al (Canada) Ltd. 2015 PPRDVED TA/KK

Reference image scale 1:9.000

3.8 m 7.5 m 10.5 m 4.5 m S/G Bedrock 0.07 < 0.05 0.05 0.0057 < 0.003 0.009 0.03 0.14 < 0.01 0.16 < 0.05 < 0.05 6.22 0.036 0.858 0.43 < 0.01 0.13 0.22 0.01 0.09 0.02 0.08 < 0.01 0.04 1.81 0.03 -2.49 < 0.010 0.033 -28 -< 0.03 0.31 1,380 <10 32 • 4,540 <50 217 -21,000 64 1,500 -1,250 20,000 <100 ÷ 1.04 • . 11.9 --

2013 Air Photo Source: Google Earth

Reference image scale 1:9,000

Approximate Property Boundary Borehole Monitoring Well EBA Borehole/Monitoring Well BH/MW 2001, max install 15.24 mbg (Gravel/Silt/Sand) (P) indicates well was present and monitored NT indicated location not previously tested Estimated Plume (Pre-2014 Assessment) Underground Power Line (240 kV) - POVER -----Sanitary Sewer Line Catch Basin Manhole Fire Hydrant

Stantec (2010) Geotechnical Borehole

A3: 14-11

A3: 14-0

SAN

CB

MH

OFH

-0-

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
State of the local	1.10
Contraction of the	医淋虫间
L 18-9	
2	
the second second	and the second
	Se all
1000	
	7000
	1000
Sec. 1 Sec.	
	1201257
Con March	
A3: 14	-08
30-Oct-2014	0.5 m
Soil	S/G Fill
Anthracene	0.082
Fluroanthene	0.17
Naphthalene	0.062
Phenanthrene	0.24
Pyrene	0.14

A3:	14-	09
-		

0.5 m	1.0 m	3.1 m
Clay Fill	Clay Fill	S/G Fill
0.041	0.066	< 0.003
0.17	0.3	0.01
0.011	0.042	< 0.010
0.14	0.23	0.01
0.19	0.29	0.02
0.13	< 0.05	<0.05
1.22	1.31	8.83
	21-Nov-201	4
	0.548	
	0.062	
	159	

2013 Air Photo Source: Google Earth	
-------------------------------------	--

R	
2014 Alber Guidel	
Soil	
Acenaphthene	0.38
Anthracene	0.0056
Fluroanthene	0.039
Fluorene	0.34
Naphthalene	0.017
Phenanthrene	17.80.00 v7 0194 0074
Pyrene	0.04
Benzo(a)anth.	0.083
Toluene	0.12
Ethylbenzene	0.21
Xylenes (SS)	28/16
Fraction 1 (SS)	440/30
Fraction 2 (SS)	520/160
Fraction 3	1,700/3,500
Fraction 4	10,000
Boron	2
Lead	260
Groundwater	
Manganese	0.05
Zinc	0.03
TDS	500
Chloride	120
10 0 10	20 30m
CLIENT	A COLOR AND A COLO
9469 Rossdale 10155 - 96th A Edmonton, DRAVING TITLE Area 3, Deta	venue NW Alberta
Groudnwater Data	PAHs & Metals
BASE/SITE PLAN PROV Nichols Environment REVISION DATE	al (Canada) Ltd.
February SCALE A	2015 PROVED
1:1,000	TA/KK
PROJECT ND. 14-214-	CRD
Figure	e 5

Reference image scale 1:9,000

			and the second s		
	A6: 14	-14		A6: 14-16	
3-Nov-2014	3.5 m	4.0 m	5.0 m	3-Nov-2014 1.5 m 2.0 m 2.5 m	4.5 n
Soil		Clay Fill		Soil Sand/Debris Silt/Debris Silt/Ash	
Anthracene	24	0.078	0.102	Anthracene 0.058 - 0.061	<0.00
Fluroanthene	. . .	0.31	0.19	Fluroanthene 0.19 - 0.4	<0.0
Naphthalene	85	0.024	0.027	Naphthalene 0.075 - 0.019	0.01
Phenanthrene	1	0.24	0.24	Phenanthrene 0.17 - 0.15	0.01
Pyrene	14	0.29	0.21	Pyrene 0.15 - 0.46	<0.0
Benzo(a)anth.		0.16	0.11	Benzo(a)anth. 0.06 - 0.25 Formar H.P.Plant pH - - 7.5	<0.0
pH	7.7		8.2		7.8
Barium	469	12	325	Arsenic 41 9.8 12.9	5.9
Boron (HWS)	19.2	9 4	9.58	Barium 1,630 654 642	320
	6: 14-15	74	1	Boron (HWS) 17.6 15.4 18.2	29.6
3-Nov-2014	3.0 m	6.0 m	Really "	Copper 79.6 31.5 25.8	21.7
	Sand/Debris	Silt	1 10	Lead 148 43.4 49.8	16.5
Anthracene	0.153	0.004	1 pm	Molybdenum 4.5 1.4 1.9	1.0
Fluroanthene	0.52	0.001			
Vaphthalene	0.034	< 0.01	EL CO		
Phenanthrene	0.39	0.03	-		
Pyrene	0.52	0.02	1000	and the second of the second o	3.5
Benzo(a)anth.	0.26	<0.01			2.4.13
)H	7.4	7.8			2.012
Barium	856	702		92-4	
		102		Ba & Be at	- 10
the second se				Pump water Ba & Be at 38-4.6 mbg	1
Boron (HWS)	27.6	33.1		House #2 A6: 14-14 AC: 14-15	11
Boron (HWS) Groundwater Anthracene	27.6 21-No	33.1 v-2014		Pump House #2 A6: 14-14 House #2 A6: 14-14	-1
Boron (HWS) Groundwater Anthracene	27.6 21-No 0.00	33.1		House #2 A6: 14-14 AC: 14-15	1
Boron (HWS) Groundwater Anthracene Fluroanthene	27.6 21-No 0.00 0.00	33.1 v-2014 0035		House #2 A6: 14-14 AG: 14-15	1
Boron (HWS) Groundwater Anthracene Fluroanthene Pyrene	27.6 21-No 0.00 0.00 0.00	33.1 v-2014 0035 0009		House #2 A6: 14-14 Ac; 14-15 A6: 14-16	
Boron (HWS) Groundwater Anthracene Fluroanthene Pyrene Benzo(a)anth.	27.6 21-No 0.00 0.00 0.00 0.00	33.1 v-2014 0035 0009 0010		House #2 A6: 14-14 Ac; 14-15 A6: 14-16	
Boron (HWS) Groundwater Anthracene Fluroanthene Pyrene Benzo(a)anth, Benzo(a)pyrene	27.6 21-No 0.00 0.00 0.00 0.00	33.1 v-2014 0035 0009 0010 0006		A6: 14-14 A6: 14-16 A6: 14-16 A6: 14-17 Pump House #1	
Koron (HWS) Groundwater Anthracene Fluroanthene Pyrene Benzo(a)anth, Kenzo(a)pyrene	27.6 21-No 0.00 0.00 0.00 0.00 0.00	33.1 v-2014 0035 0009 0010 0006 0072 344		A6: 14-14 A6: 14-16 A6: 14-16 A6: 14-17 Pump House #1 A6: 14-17	
Boron (HWS) Groundwater Anthracene Fluroanthene Pyrene Benzo(a)anth, Benzo(a)pyrene	27.6 21-No 0.00 0.00 0.00 0.00 0.00	33.1 v-2014 0035 0009 0010 0006 0072 344		House #2 A6: 14-14 Ac; 14-16 A6: 14-16 Ac; 14-16 A6: 14-17 Pump Flouse #1 Ac; 14-16 Ac; 14-16 Ac; 14-17 Ac; 14-16 Ac; 14-17 Ac; 14-16 Ac; 14-17 Show 2014 3.5 m	
Boron (HWS) Groundwater Anthracene Fluroanthene Pyrene Benzo(a)anth, Benzo(a)pyrene	27.6 21-No 0.00 0.00 0.00 0.00 0.00	33.1 v-2014 0035 0009 0010 0006 0072 344		House #2 A6: 14-16 A6: 14-16 A6: 14-16 A6: 14-17 House #1 House #1 A6: 14-17 Soil Silt Sand/co	al Coal/
Boron (HWS) Groundwater Anthracene Fluroanthene Pyrene Benzo(a)anth, Benzo(a)pyrene	27.6 21-No 0.00 0.00 0.00 0.00 0.00	33.1 v-2014 0035 0009 0010 0006 0072 344		A6: 14-14 A6: 14-16 A6: 14-16 A6: 14-17 A6: 14-16 A6: 14-17 Pump House #2 A6: 14-16 A6: 14-17 Solower #2 Solower #2 Anthracene 0.012 <0.000	al Coal/ 3 <0.0
Boron (HWS) Groundwater Anthracene Fluroanthene Pyrene Benzo(a)anth, Benzo(a)pyrene	27.6 21-No 0.00 0.00 0.00 0.00 0.00	33.1 v-2014 0035 0009 0010 0006 0072 344	In River	A6: 14-16 A6: 14-16 A6: 14-16 A6: 14-17 Soli Silt Sand/co Anthracene 0.012 <0.00 Fluroanthene 0.04 0.01	al Coal/ 3 <0.0 0.0
Boron (HWS) Groundwater Anthracene Fluroanthene Pyrene Benzo(a)anth, Benzo(a)pyrene	27.6 21-No 0.00 0.00 0.00 0.00 0.00	33.1 v-2014 0035 0009 0010 0006 0072	In River	House #2 A6: 14-14 Are 14-15 A0: 14-16 A8: 14-17 Pump House #2 A6: 14-16 A8: 14-17 A0: 14-16 A8: 14-17 A6: 14-17 Solid Silt Sand/cd Anthracene 0.012 <0.00	al Coal/ 3 <0.0 0.0 5.7
Boron (HWS) Groundwater Anthracene Fluroanthene Pyrene Benzo(a)anth, Benzo(a)pyrene	27.6 21-No 0.00 0.00 0.00 0.00 0.00	33.1 v-2014 0035 0009 0010 0006 0072 344	In River	House #2 A6: 14-14 Are trans Ab: 14-10 Ab: 14-10 Ab: 14-17 Ab: 14-17 Ab: 14-17 3-Nov-2014 3.5 m 5.5 m Soil Silt Sand/co Anthracene 0.012 <0.00	al Coal/3 3 <0.0 0.0 5.7 1,75
Koron (HWS) Groundwater Anthracene Fluroanthene Pyrene Benzo(a)anth, Kenzo(a)pyrene	27.6 21-No 0.00 0.00 0.00 0.00 0.00	33.1 v-2014 0035 0009 0010 0006 0072 344	in River	House #2 A6: 14-14 Ac: 14-16 Ac: 14-16 Ac: 14-17 Ac: 14-17 Ac: 14-16 Ac: 14-17 Ac: 14-17 Solid Silt Sand/color Soil Silt Sand/color Anthracene 0.012 <0.00	al Coal/ 3 <0.0 0.0 5.7 1,75 31
Koron (HWS) Groundwater Anthracene Fluroanthene Pyrene Benzo(a)anth, Kenzo(a)pyrene	27.6 21-No 0.00 0.00 0.00 0.00 0.00	33.1 v-2014 0035 0009 0010 0006 0072 344	In River	House #2 A6: 14-14 A8: 14-15 A6: 14-16 A6: 14-17 Pump A6: 14-16 A6: 14-17 A6: 14-17 Solo S.5 m 5.5 m Soil Silt sand/cd Anthracene 0.012 <0.00	al Coal/ 3 <0.0 0.0 5.7 1,7! 31 3.8
Koron (HWS) Froundwater Anthracene Fluroanthene Ayrene Benzo(a)anth, enzo(a)pyrene	27.6 21-No 0.00 0.00 0.00 0.00 0.00	33.1 v-2014 0035 0009 0010 0006 0072 344	In River	House #2 A6: 14-14 Ar: 14-15 A6: 14-16 A6: 14-17 A6: 14-17 J-Nov-2014 3.5 m Soil Sitt Sand/cd Anthracene 0.012 VOID PH Barium 320 IpH 8.0 Boron (HWS) 9.56 Selenium 0.4 A1.12	al Coal/ 3 <0.0 0.0 5.7 1,7! 31 3.8 0.8
Boron (HWS) Groundwater Anthracene Fluroanthene Pyrene Benzo(a)anth, Benzo(a)pyrene	27.6 21-No 0.00 0.00 0.00 0.00 0.00	33.1 v-2014 0035 0009 0010 0006 0072 344	in River	House #2 A6: 14-14 A8: 14-15 A6: 14-16 A6: 14-17 A6: 14-17 S. Nov-2014 3.5 m 5.5 m Soil Silt Sand/cd Anthracene 0.012 <0.00	al Coal/ 3 <0.0 0.0 5.7 1,75 31 3.8 0.8 014
Boron (HWS) Groundwater Anthracene Fluroanthene Pyrene Benzo(a)anth, Benzo(a)pyrene	27.6 21-No 0.00 0.00 0.00 0.00 0.00	33.1 v-2014 0035 0009 0010 0006 0072 344	n River	House #2 A6: 14-14 A8: 14-16 A6: 14-16 A6: 14-17 A6: 14-17 B8: 14-17 Solution Solution Solid Silt	al Coal/3 3 <0.0 0.0 5.7 1,75 31 3.8 0.8 014 4
Boron (HWS) Groundwater	27.6 21-No 0.00 0.00 0.00 0.00 0.00	33.1 v-2014 0035 0009 0010 0006 0072 344	In River	House #2 A6: 14-14 A8: 14-15 A6: 14-16 A6: 14-17 A6: 14-17 S. Nov-2014 3.5 m 5.5 m Soil Silt Sand/cd Anthracene 0.012 <0.00	al Coal/ 3 <0.0 5. 1,7 31 3.0 0.1 0.1 4

	O LS	
2014 Alber Guideli		
Soil		
Anthracene	0.0056	
Fluroanthene	0.039	
Naphthalene	0.017	
Phenanthrene	0.061	
Pyrene	0.04	
Benzo(a)anth.	0.083	
pH	6 - 8.5	
Arsenic	17	
Barium	500	
Boron (HWS)	2	
Copper	63	
Lead	140	
Molybdenum	4	
Selenium	1	
Groundwater		
Anthracene	0.000012	
Fluroanthene	0.00004	
Pyrene	0.000025	
Benzo(a)anth.	0.000018	
Benzo(a)pyrene	0.000015	
Manganese	0.05	
0 10	20 30)m
	Road NW & venue NW	
Area 6 De Soil & Groundv ASE/SITE PLAN PROV.	vater Data	
Nichols Environment VISION DATE	al (Canada) Ltd	
February	2015 PROVED	
ALE AF 1:1,000		
DJECT ND. 14-214-1		
Figure	97	

Monitoring Well

Former UST (Approximate Location) Gas Line

Sanitary Sewer Line

L
Reference image scale 1:9,000

Legend:

Approximate Location of Former Reactivator

Approximate Property

Boundary

EBA Monitoring Well (2004) Installed to 9.91 mbg (Gravel/Silt/Sand)

NICHOLS ENVIRENTAL NICHOLS ENVIRONMENTAL CANADA) LTD.
2014 Alberta Tier 1 GuidelinesGroundwaterPAHsVariesDibenzofuran1.2E-07PCP0.0005
-10 0 10 20 30
CLIENT The City of Edmonton
PRDJECT Phase II ESA 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta
DRAVING TITLE Area 2 Detail and Groundwater Data
BASE/SITE PLAN PROVIDED BY Nichols Environmental (Canada) Ltd. REVISION DATE February 2015
SCALE APPREVED 1:1,000 TA/KK PREJECT NE. 14-214-CRD

Figure 11

TABLES

TABLE:1TITLE:FIELD ORGANIC VAPOUR CONCENTRATIONSPROJECT#:14-214-CRDCLIENT:The City of EdmontonPROJECT:Phase II Environmental Site AssesementSITE:Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NWLOCATION:Edmonton, Alberta

Area 1 Borehole 14-18 14-19 14-20 Date 19-Nov-2014 Depth 0.5 0.9 0.4 0.1 1.0 0.9* 0.1* 0.1* 1.5 0.5* 0.3* ND* 2.0 0.6 ND 0.3 2.5 0.1 0.4 ND 3.0 0.3 0.1 0.5 3.5 0.4 ------4.0 0.8 ------4.5 0.6 ----5.0 0.4 ----5.5 0.6 ------6.0 1.2 -----6.5 0.4 ----7.0 0.7 -----7.5 1.0 ----8.0 0.4 ------8.5 0.1 ------9.0 0.3 ------9.5 0.5 ------10.0 0.4 ------NS 10.5 -----

Area 3												
Borehole	14-08	14-09	14-10	14-11	14-12	14-13						
Date Depth			30-Oc	t-2014								
0.5	4.5*	72.2*	17.8	61.6*	38.7*	43.9*						
1.0	1.8*	81.3*	16.1*	25.4*	381.3*	35.6						
1.5	3.7	6.3	17.8*	13.2	3,156	36.5*						
2.0	5.2*	2.7	19.1*	18.7*	2,377	5.4						
2.5	4.7*	12.0	8.7	17.8	2,812	39.8						
3.0	3.5	7.2*	16.8	11.6	2,079*	45.7						
3.8	3.6	10.4	18.8	20.7	3,662*	229.3*						
4.5	3.6	15.4	16.6	25.5*	3,188*	47.2						
5.3		5.9	17.6	19.2	512.4	48.5*						
6.1		22.4	20.6*	25.0	205.5	40.9*						
6.8		11.4	6.5	16.5	60.6*	31.5						
7.5		8.4	8.1	13.4	170.6*	27.0*						
8.3		33.1*	18.6	9.3	75.0	9.7						
9.1		31.0*		12.5	80.7	16.6						
9.8		4.5		42.7*	97.0							
10.5		11.7			311.8*							
11.3		18.5										
12.1		13.0										

		Area 5								
Borehole	14-01	14-02	14-03	14-04						
Date Depth	27-Oct-2014									
0.5	5.5	19.3	18.3*	17.8						
1.0	7.0	35.4	33.4*	9.9*						
1.5	7.8*	20.2	15.3	10.3						
2.0	7.9	26.4*	19.7	9.4						
2.5	5.9	25.4*	25.7	12.2						
3.0	6.3	24.8	31.3	38.3*						
3.5	7.7	20.1	30.1	17.3						
4.0	8.3	22.6	26.6	34.4						
4.5	8.9	53.8	29.7	30.2						
5.3	7.9	45.6								
6.1	8.0	46.5								
6.8	6.2	40.3								
7.5	5.1	41.2								
8.3	15.5	16.7								
9.1	33.9	14.5								
9.8	22.2									

		Area 6								
Borehole	14-14	14-15	14-16	14-17						
Date Depth	3-Nov-2014									
0.5	7.7	40.0	42.5	18.2						
1.0	8.5	32.0	50.4	21.4						
1.5	13.4	35.9	44.8*	21.2						
2.0	13.3	35.3	46.7*	25.4						
2.5	14.4	33.4	50.8*	26.8						
3.0	10.9	31.2*	36.0	32.6						
3.5	19.6*	15.7	22.2	34.2*						
4.0	31.1*	13.8	19.9	33.5						
4.5	NS	7.9	34.3*	25.6						
5.0	14.1*	15.1	43.2	32.8						
5.5	21.1	25.4	49.2	29.2*						
6.0	21.7	25.0*	38.2	27.1						
6.5	NS	8.1*	47.9	26.1*						
7.0	NS	NS	41.2	26.9						
7.5	NS	NS	51.4*	26.4						
8.0	NS	NS	33.2	27.0*						
8.5	17.0	NS	32.3	22.3						
9.0	NS	NS	24.9	35.7						
9.5	32.0	55.4	20.4	25.2						
10.0	32.6	58.6	16.1	19.4						
10.5	36.7	60.5		10.6						
11.0	18.9	24.9		3.2						
11.5	8.3	34.4		7.3						
12.0	NS	33.6		15.1						

(All concentrations in parts per million by volume = ppmv, unless noted)

Depth = metres below grade (mbg)

* = Submitted for Laboratory Analysis

ND = Non-detect (<0.1 ppmv OVC)

	Area	7					
Borehole	14-05	14-06	14-07				
Date Depth	28-Oct-2014						
0.8	15.8	16.6	51.8				
1.5	24.5	12.2	44.2				
2.3	29.3	25.7	50.6*				
3.1	34.7	28.4	21.1				
3.8	34.8*	25.2	38.5				
4.5	30.7	22.4	40.5				
5.3	27.0	28.1	5.2				
6.1	32.8	26.1	7.6				
6.8	20.0	25.7	24.1				
7.5	34.0*	22.8	28.4				
8.3	32.3	34.1*	16.9				
9.1	NS	26.1	20.0				
9.8	8.1	28.9*	30.4				
10.5	8.0	24.2	33.9*				
11.3	4.6	10.9	4.0				
12.1	11.8	13.0	2.4				

2

TITLE:	SOIL ANALYSES - METALS (AREA 1)
PROJECT#:	14-214-CRD
CLIENT:	The City of Edmonton
PROJECT:	Phase II Environmental Site Assesement
SITE:	Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW
LOCATION:	Edmonton, Alberta

			c c	SAMPLE I DENT	IFICATION	2014 Alberta Tier 1 *							
		14	-18	14-	-19	14	-20			Coarse Grained			
Depth (m)		1.0	1.5	1.0	1.5	1.0	1.5	Lan	d Use	Residential / Parkland			
Soil		S	ilt	Sand/Gravel	Silt	S	ilt	Lan	u 036	Residential / Parkialiu			
Sample Date				19-Nov	/-2014	_		Natural Area	Agricultural	Residential /	Commercial	Industrial	
OVC		0.9	0.5	0.1	0.3	0.1	ND		-	Parkland			
Antimony		0.2	<0.2	<0.2	<0.2	<0.2	<0.2	20	20	20	40	40	
Arsenic		4.4	5.8	3.3	6.7	6.4	5.1	17	17	17	26	26	
Barium		166	151	104	108	217	129	750	750	500	2,000	2,000	
Barite-barium		20.1	18.5	24.7	20.3	21.9	23.8	10,000	10,000	10,000	15,000	140,000	
Beryllium		0.5	0.4	0.3	0.4	0.7	0.5	5	5	5	8	8	
Boron (HWS)		1.43	0.78	0.44	0.69	5.90	3.96	2	2	2	2	2	
Cadmium	-	0.19	0.17	0.11	0.15	0.27	0.17	3.8	1.4	10	22	22	
Chromium (total)	σ	12.4	13.4	6.4	11.5	17.7	12.0	64	64	64	87	87	
Cr (VI)	Are	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.4	0.4	0.4	1.4	1.4	
Cobalt	~	6.6	8.3	4.9	7.1	10.4	7.4	20	20	20	300	300	
Copper		13.1	12.4	6.1	10.2	17.2	10.7	63	63	63	91	91	
Lead		25.3	7.6	<5.0	6.4	11.9	7.0	70	70	140	260	600	
Mercury (inorganic)		3.8	0.06	0.39	0.06	0.04	0.04	12	6.6	6.6	24	50	
Molybdenum		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4	4	4	40	40	
Nickel		17.8	20	11.3	17.2	24.6	18.5	50	50	50	50	50	
Selenium		0.3	0.3	0.4	< 0.3	0.6	< 0.3	1	1	1	2.9	2.9	
Silver		0.1	0.1	<0.1	0.1	0.2	0.1	20	20	20	40	40	
Thallium		0.13	0.15	0.1	0.12	0.18	0.13	1	1	1	1	1	
Tin		1.7	1.6	2.2	1.9	1.5	1.8	5	5	5	300	300	
Uranium		0.8	0.7	0.6	0.6	0.8	0.6	33	23	23	33	300	
Vanadium		21.0	25.2	13.6	21.7	31.5	21.8	130	130	130	130	130	
Zinc		49	42	22	35	64	36	200	200	200	360	360	

BOLD BOLD

Applicable Guideline Criteria
 Parameter Exceeds Recommended Guideline Criteria

*Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Table 1). May 2014.

(All concentrations in mg/kg = ppm, unless noted)		
Grain size MUST PSA D50 > 75 um	12.7%	A1: 14-19 @ 2 0 m (fine-grained)
Grain size MUST PSA D50 > 75 um	42.6%	A6: 14-14 @ 3 5 m (fine-grained)
Grain size MUST PSA D50 > 75 um	81.3%	A6: 14-16 @ 7 5 m (coarse-grained)
Grain size MUST PSA D50 > 75 um	71.2%	A7:14-05 @ 7.5 m (coarse-grained)

HWS = Hot Water Soluble

OVC = Organic Vapour Concentration (ppmv)

ND = Non-detect (<0.1 ppmv OVC)

TABLE:	3
TITLE:	SOIL ANALYSES - POLYCYCLIC AROMATIC HYDROCARBONS (AREA 3)
PROJECT#:	14-214-CRD
CLIENT:	The City of Edmonton
PROJECT:	Phase II Environmental Site Assesement
SITE:	Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW
LOCATION:	Edmonton, Alberta

									SAM	PLE I DENT	IFICATIO	N										201	14 Alberta Tier	1 *	
	1	4-08		14	-09			14-10			14-11				14-12				14-13		Coarse Grained				
Depth (m)	0.5	2.5	0.5	1.0	3.1	9.0	1.0	1.5	6.1	1.0	2.0	9.8	1.0	1.5	4.5	7.5	10.5	0.5	6.1	7.5				Commercial	
Soil	S/G Fill	Silt	Clay	y Fill	Wood Debris	S/G Fill	Si	ilt	Silt/S/G Interface	Clay Fill w/Debris	Silt	S/G	Clay Fill	S	It	S/G	Bedrock	Clay Fill	Silt & Wood Debris	Silt	Lan	Land Use Residential / Parkland Buf			uffer**
Sample Date										30-Oc	t-2014										Natural Area	Agricultural	Residential /	Commercial	Industrial
OVC	4.5	4.7	72.2	81.3	7.2	31	16.1	17.8	20.6	25.4	18.7	42.7	381.3	3156	3188	170.6	311.8	43.9	40.9	27		-	Parkland		
Acenaphthene	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	0.05	< 0.05	0.39	0.43	0.07	< 0.05	0.05	< 0.05	< 0.05	< 0.05	0.38	0.38	0.38	0.38	0.38
Acenaphthylene	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.14	0.32	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-				
Anthracene	0.082	< 0.003	0.041	0.066	0.003	< 0.003	0.292	0.026	< 0.003	0.113	0.165	0.005	1.41	0.766	0.0057	< 0.003	0.009	0.015	0.021	<0.003	0.0056	0.0056	0.0056	0.0056	0.0056
Fluoranthene	0.17	0.01	0.17	0.3	0.02	0.01	0.47	0.1	<0.01	0.4	0.54	0.03	1.28	1.02	0.14	<0.01	0.03	0.05	0.1	0.02	0.039	0.039	0.039	0.039	0.039
Fluorene	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06	< 0.05	1.37	1.36	0.16	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.34	0.34	0.34	0.34	0.34
Naphthalene	0.062	0.017	0.011	0.042	< 0.010	<0.010	0.048	0.057	0.01	0.026	0.022	< 0.010	0.957	19.6	6.22	0.036	0.858	<0.010	0.069	0.033	0.017	0.017	0.017	0.017	0.017
Phenanthrene	0.24	0.04	0.14	0.23	0.01	0.01	0.28	0.09	0.03	0.41	0.51	0.02	13.3	6.8	0.43	<0.01	0.13	0.04	0.1	0.07	0.061	0.061	0.061	0.061	0.061
Pyrene	0.14	0.02	0.19	0.29	0.02	0.02	0.53	0.09	0.01	0.49	0.49	0.04	10.4	3.56	0.22	0.01	0.09	0.06	0.1	0.03	0.040	0.040	0.040	0.040	0.040
Carcinogenic PAHs																				-					
IACR (Coarse)	0.097	< 0.001	0.376	0.526	< 0.001	<0.001	1.02	0.101	< 0.001	0.799	1.02	0.003	1.08	1.36	0.096	< 0.001	0.006	0.045	0.098	0.003			IACR < 1.0		
IACR (Fine)	0.187	<0.001	0.727	1.02	<0.001	<0.001	1.97	0.194	<0.001	1.54	1.97	0.006	2.08	2.64	0.184	< 0.001	0.013	0.086	0.188	0.005					
Benzo(a)anthracene	0.08	< 0.01	0.13	< 0.05	< 0.05	< 0.05	0.292	0.026	< 0.003	0.28	0.33	0.01	1.66	0.65	0.08	< 0.01	0.02	0.03	0.04	<0.01	0.083	0.083	0.083	0.083	0.083
Benzo(a)pyrene	0.06	< 0.05	0.12	0.15	< 0.05	< 0.05	0.25	0.07	< 0.05	0.3	0.33	< 0.05	0.33	0.64	0.05	< 0.05	< 0.05	< 0.05	0.06	< 0.05	0.60	0.60	0.77	0.77	0.77
Benzo(b+j)fluoranthene	0.07	< 0.05	0.13	0.21	< 0.05	< 0.05	0.32	0.09	< 0.05	0.26	0.3	< 0.05	0.37	0.42	0.07	< 0.05	< 0.05	0.05	0.09	< 0.05	6.2	6.2			
Benzo(g,h,i)perylene	< 0.05	< 0.05	0.08	0.1	< 0.05	< 0.05	0.16	< 0.05	< 0.05	0.06	0.08	< 0.05	0.38	0.36	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-				
Benzo(k)fluoranthene	< 0.05	< 0.05	0.06	0.21	< 0.05	< 0.05	0.18	< 0.05	< 0.05	0.13	0.18	< 0.05	< 0.05	0.17	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	6.2	6.2			
Chrysene	0.07	< 0.05	0.17	0.19	< 0.05	< 0.05	0.26	0.06	< 0.05	0.19	0.26	< 0.05	1.81	1.32	0.1	< 0.05	< 0.05	< 0.05	0.06	0.05	6.2	6.2			
Dibenzo(a,h)anthracene	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.15	0.07	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-				
Indeno(1,2,3-c,d)pyrene	< 0.05	< 0.05	0.06	0.11	< 0.05	< 0.05	0.21	< 0.05	< 0.05	0.11	0.13	< 0.05	0.29	0.24	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-				

= Applicable Guideline Criteria BOLD

= Parameter Exceeds Recommended Guideline Criteria

*Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Table 1). May 2014. **Soil Vapour Inhalation Guideline for Residential / Parkland Land Use Applied for 30-m Buffer (however, no changes)

(All concentrations in mg/kg = ppm, unless noted)

Grain size MUST PSA D50 > 75 um 12.7% A1	1: 14-19 @ 2 0 m	(fine-grained)
Grain size MUST PSA D50 > 75 um 42.6% A6	6: 14-14 @ 3 5 m	(fine-grained)
Grain size MUST PSA D50 > 75 um 81.3% A6	6: 14-16 @ 7 5 m	(coarse-grained)
Grain size MUST PSA D50 > 75 um 71.2% A7	7:14-05 @ 7.5 m	(coarse-grained)

IACR = Index of Additive Cancer Risk

OVC = Organic Vapour Concentration (ppmv)

S/G = Sand/Gravel

--- = No value provided in guidelines

TABLE: 4 TITLE: SOIL ANALYSES - PETROLEUM HYDROCARBONS (AREA 3) PROJECT#: 14-214-CRD CLIENT: The City of Edmonton PROJECT: Phase II Environmental Site Assesement SITE: Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW

LOCATION: Edmonton, Alberta

	Coarse Grained	Benzene	Toluene	Ethylbenzene	Xylenes	Fraction 1	Fraction 2	Fraction 3	Fraction 4
2014 Alberta	Natural Area	0.078	0.12	0.21	28	210	150	300	2,800
Tier 1*	Agricultural	0.073	0.12	0.21	12	24	130	300	2,800
	Residential / Parkland	0.073	0.12	0.21	12	24	130	300	2,800
Surface Soil	Commercial	0.078	0.12	0.21	28	270	260	1,700	3,300
Suitace Soli	Industrial	0.078	0.12	0.21	28	270	260	1,700	3,300

Surface Soil					Benzene	Toluene	Ethylbenzene	Xylenes	Fraction 1	Fraction 2	Fraction 3	Fraction 4
Land Use		Comm	nercial		0.078	0.12	0.21	28	270	260	1,700	3,300
Lanu Use	Re	esidential / Pa	arkland Buffer**		0.073	0.12	0.21	12	24	130	1,700	
Sample I D	Depth (m) Soil Date OVC											
Area 3												
14-08	2.0	Silt		5.2	< 0.005	< 0.02	< 0.010	< 0.03	<10	<50	<50	<100
14-09	1.0	Clay Fill	30-Oct-2014	81.3	< 0.005	< 0.02	< 0.010	< 0.03	<10	<50	281	275
14-10	2.0	Clay Fill	30-001-2014	19.1	< 0.005	< 0.02	< 0.010	< 0.03	<10	<50	<50	<100
14-11	0.5	Clay Fill		61.6	< 0.005	< 0.02	< 0.010	< 0.03	<10	<50	1,890	1,230

BOLD = Applicable Guideline Criteria

= Parameter Exceeds Recommended Guideline Criteria

*Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Table 1). May 2014.

**Soil Vapour Inhalation Guideline for Residential / Parkland Land Use Applied for 30-m Buffer

(All concentrations in mg/kg = ppm, unless noted)

BOLD

Grain size MUST PSA D50 > 75 um	12.7%	A1: 14-19 @ 2 0 m	(fine-grained)
Grain size MUST PSA D50 > 75 um	42.6%	A6: 14-14 @ 3 5 m	(fine-grained)
Grain size MUST PSA D50 > 75 um	81.3%	A6: 14-16 @ 7 5 m	(coarse-grained)
Grain size MUST PSA D50 > 75 um	71.2%	A7:14-05 @ 7 5 m	(coarse-grained)

Fraction 1 = C_6 to C_{10} (-BTEX) Fraction 3 = > C_{16} to C_{34} Fraction 4 = C_{35} +

Fraction 2 = $> C_{10}$ to C_{16}

OVC = Organic Vapour Concentration (ppmv)

TABLE: 4 TITLE: SOIL ANALYSES - PETROLEUM HYDROCARBONS (AREA 3) PROJECT#: 14-214-CRD CLIENT: The City of Edmonton PROJECT: Phase II Environmental Site Assesement SITE: Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW LOCATION: Edmonton, Alberta

	Coarse Grained	Benzene	Toluene	Ethylbenzene	Xylenes	Fraction 1	Fraction 2	Fraction 3	Fraction 4
2014 Alberta	Natural Area	0.078	0.12	0.21	28	700	520	2,500	10,000
Tier 1*	Agricultural	0.078	0.12	0.21	16	30	160	2,500	10,000
	Residential / Parkland	0.078	0.12	0.21	16	30	160	2,500	10,000
Subsoil	Commercial	0.078	0.12	0.21	28	440	520	3,500	10,000
Subsoli	Industrial	0.078	0.12	0.21	28	440	520	3,500	10,000

Subsoil					Benzene	Toluene	Ethylbenzene	Xylenes	Fraction 1	Fraction 2	Fraction 3	Fraction 4
Land Use		Comm	iercial		0.078	0.12	0.21	28	440	520	3,500	10,000
Lanu Use	R	esidential / Pa	rkland Buffer**		0.078	0.12	0.21	16	30	160	3,500	10,000
Sample ID	Depth (m) Soil Date OVC											
Area 3												
14-09	8.3	Sand/Gravel		33.1	< 0.005	< 0.02	< 0.010	< 0.03	<10	<50	<50	<100
14-11	4.5	Silt		25.5	< 0.005	< 0.02	< 0.010	< 0.03	<10	<50	<50	<100
14-11	9.8	Sand/Gravel		42.7	< 0.005	< 0.02	< 0.010	< 0.03	<10	<50	<50	<100
	3.8	Silt		3662	0.045	1.81	2.49	28.0	1,380	4,540	21,000	20,000
14-12	6.8	Sand/Gravel	30-Oct-2014	60.6	< 0.005	0.03	< 0.010	< 0.03	<10	<50	<50	<100
14-12	7.5	Saliu/Glavel		170.6	< 0.005	0.04	< 0.010	< 0.03	<10	<50	64	<100
	10.5	Bedrock		311.8	< 0.005	0.03	0.033	0.31	32	217	1,500	1,250
14-13	3.8	Clay Fill		229.3	< 0.005	< 0.02	0.011	0.06	38	278	10,400	5,680
14-13	5.3	Ciay Fill		48.5	< 0.005	< 0.02	<0.010	< 0.03	<10	<50	<50	<100

BOLD BOLD = Applicable Guideline Criteria

= Parameter Exceeds Recommended Guideline Criteria

*Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Table 3). May 2014.

**Soil Vapour Inhalation Guideline for Residential / Parkland Land Use Applied for 30-m Buffer Ecological Direct Contact Pathway has been excluded for PHC Fractions 1 to 4.

(All concentrations in mg/kg = ppm, unless noted)			
Grain size MUST PSA D50 > 75 um	12.7%	A1: 14-19 @ 2 0 m	(fine-grained)
Grain size MUST PSA D50 > 75 um	42.6%	A6: 14-14 @ 3 5 m	(fine-grained)
Grain size MUST PSA D50 > 75 um	81.3%	A6: 14-16 @ 7 5 m	(coarse-grained)
Grain size MUST PSA D50 > 75 um	71.2%	A7:14-05 @ 7 5 m	(coarse-grained)

 $\begin{array}{lll} \mbox{Fraction 1} &= C_6 \mbox{ to } C_{10} \mbox{ (-BTEX)} & \mbox{Fraction 3} &= > C_{16} \mbox{ to } C_{34} \\ \mbox{Fraction 2} &= > C_{10} \mbox{ to } C_{16} & \mbox{Fraction 4} &= C_{35} + \\ \mbox{OVC} &= \mbox{Organic Vapour Concentration (ppmv)} \end{array}$

TABLE: 5 SOIL ANALYSES - METALS (AREA 3) TITLE: PROJECT#: 14-214-CRD The City of Edmonton Phase II Environmental Site Assesement CLIENT: PROJECT: Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW SITE:

LOCATION: Edmonton, Alberta

									SAMPLE	IDENTIFICA	TION									201	4 Alberta Tier	1 *	
			14-08			14-09		14	-10	14	-11		14	-12			14-13		Coarse Grained				
Depth (m)		0.5	1.0	2.5	0.5	1.0	3.1	1.0	1.5	1.0	2.0	1.0	1.0 1.5		4.5	0.5	1.5	6.1				Commercial	
Soil		S/G Fill		Silt	Cla	y Fill	Wood Debris	S	ilt	Clay Fill w/Debris	Silt	Clay Fill		Silt		Clay	Fill	Silt & Wood Debris	Lar	nd Use	Resident	ial / Parkland B	uffer**
Sample Date										30-Oct-2014									Natural Area	Agricultural	Residential / Parkland	Commercial	Industrial
OVC		4.5	1.8	4.7	72.2	81.3	7.2	16.1	17.8	25.4	18.7	381.3	3,156	2,079	3,188	43.9	36.5	40.9			Parkianu		
Antimony		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.3	<0.2	<0.2	< 0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	20	20	20	40	40
Arsenic		4	6.5	5.8	3.1	4.1	5.1	5.2	7.1	6.4	5.4	5.3	5	5.7	5.6	5.6	5.0	5.3	17	17	17	26	26
Barium		221	168	227	146	248	209	368	261	284	255	507	557	248	222	257	172	250	750	750	500	2,000	2,000
Barite-barium		21.6	18.8	23.5	37.5	37.7	17.2	34.8	53.1	29.4	26.4	105	183	75.8	62.7	32.0	20.1	49.7	10,000	10,000	10,000	15,000	140,000
Beryllium		0.8	0.6	0.5	0.4	0.5	0.7	0.6	0.6	0.6	0.6	0.7	0.5	0.5	0.5	0.6	0.5	0.6	5	5	5	8	8
Boron (HWS)		0.91	1.14	0.42	1.22	1.31	8.83	1.91	6.11	2.98	2.61	11.7	3.53	1.34	1.04	1.77	1.51	4.41	2	2	2	2	2
Cadmium	33	0.18	0.17	0.31	0.39	0.39	0.22	0.43	0.25	0.25	0.21	0.66	1.83	0.27	0.22	0.25	0.15	0.23	3.8	1.4	10	22	22
Chromium (total)	ee G	15.5	23.1	17.3	10.8	11.1	16.6	14.3	14.9	19	13.4	14.9	14.6	16.4	14.7	18.9	13.9	14.7	64	64	64	87	87
Cr (VI)	A	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.4	0.4	0.4	1.4	1.4
Cobalt		7.6	7.6	9	5.3	5.4	9.5	7.3	9	10.1	7.8	8.2	7.9	8.8	8.4	8.3	7.4	8.6	20	20	20	300	300
Copper		19	15.5	15.6	21.8	19.7	34.4	26.1	16.7	23	16.6	26.8	36.8	17.2	16.3	19.5	11.3	18.7	63	63	63	91	91
Lead		6.3	12.3	7.9	160	154	29.3	87.5	13.2	25.4	16.1	309	1,160	16.3	11.9	222	12.1	10.2	70	70	140	260	600
Mercury (inorganic)		0.06	0.02	0.03	0.05	0.09	0.03	0.09	0.04	0.23	0.03	0.3	0.05	0.04	0.04	0.04	0.03	0.05	12	6.6	6.6	24	50
Molybdenum	_	1.2	1.2	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	2.2	<1.0	2.3	1.2	1.0	<1.0	1.7	<1.0	<1.0	4	4	4	40	40
Nickel		29.5	26.5	23.7	16	21.4	24.4	22.3	24.5	24.3	21.2	24.2	23	23.5	23	23	20.1	23.9	50	50	50	50	50
Selenium		0.9	0.5	0.4	< 0.3	<0.3	0.4	0.4	0.3	0.4	< 0.3	0.4	< 0.3	< 0.3	0.3	0.4	0.3	< 0.3	1	1	1	2.9	2.9
Silver	_	0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	0.2	0.2	<0.1	<0.1	0.1	<0.1	20	20	20	40	40
Thallium		0.17	0.12	0.17	0.11	0.09	0.2	0.17	0.17	0.2	0.16	0.17	0.16	0.19	0.17	0.15	0.13	0.16	1	1	1	1	1
Tin	_	2	2	1.5	2.1	2.7	1.3	1.9	1.5	1.8	1.7	2.1	2	1.8	1.5	1.7	1.7	1.5	5	5	5	300	300
Uranium		1.4	1.2	0.9	0.6	0.7	0.9	1.1	1	1.1	1	1.1	0.8	0.8	0.8	0.9	0.5	0.9	33	23	23	33	300
Vanadium	_	26.3	29	27	18.9	18.8	30.5	24.6	26.5	26.5	23.3	24.2	24.8	26.8	25.7	25.5	23.8	26	130	130	130	130	130
Zinc		43	42	60	57	62	62	106	61	65	49	123	138	60	50	64	46	56	200	200	200	360	360

= Applicable Guideline Criteria Parameter Exceeds Recommended Guideline Criteria

*Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Table 1). May 2014. **Soil Vapour Inhalation Guideline for Residential / Parkland Land Use Applied for 30-m Buffer (however, receptor not active for metals) (All concentrations in mg/kg = ppm, unless noted)

(All concentrations in mg/kg = ppm, unless noted)			
Grain size MUST PSA D50 > 75 um	12.7%	A1: 14-19 @ 2.0 m	(fine-grained)
Grain size MUST PSA D50 > 75 um	42.6%	A6: 14-14 @ 3.5 m	(fine-grained)
Grain size MUST PSA D50 > 75 um	81.3%	A6: 14-16 @ 7.5 m	(coarse-grained)
Grain size MUST PSA D50 > 75 um	71.2%	A7:14-05 @ 7 5 m	(coarse-grained)

HWS = Hot Water Soluble

OVC = Organic Vapour Concentration (ppmv)

S/G = Sand/Gravel

6

TITLE:	SOIL ANALYSES - POLYCYCLIC AROMATIC HYDROCARBONS (AREAS 1 & 5)
PROJECT#:	14-214-CRD
CLIENT:	The City of Edmonton
PROJECT:	Phase II Environmental Site Assesement
SITE:	Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW
LOCATION:	Edmonton, Alberta

		SAMPLE IDENTIFICATION										20	14 Alberta Tier	1 *		
		14-18	14-19	14	-20		14-01	14-02	14-03	14-04			Coarse Grained			
Depth (m)		1.5	1.0	1.0	1.5		1.5	2.0	1.0	3.0	Lan	id Use	Posi	dential / Parkla	ind	
Soil		Silt	Sand/Gravel	S	ilt		Silt	Silt	Silt	Silt	Lan	10 036				
Sample Date			19-Nov	/-2014				27-Oc	t-2014		Natural Area	Agricultural	Residential / Parkland	Commercial	Industrial	
OVC		0.5	0.1	0.1	ND		7.8	26.4	33.4	38.3			Parkianu			
Acenaphthene		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	<0 05	< 0.05	0.38	0.38	0.38	0.38	0.38	
Acenaphthylene		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	<0 05	< 0.05	-					
Anthracene		< 0.003	<0 003	0.007	< 0.003		< 0.003	< 0.003	< 0.003	< 0.003	0.0056	0.0056	0.0056	0.0056	0.0056	
Fluoranthene		<0.01	< 0.01	0.02	< 0.01		< 0.01	<0.01	<0 01	<0.01	0.039	0.039	0.039	0 039	0.039	
Fluorene		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	<0 05	< 0.05	0.34	0.34	0.34	0.34	0.34	
Naphthalene	-	0.01	<0 010	0.013	<0.010	ъ	< 0.010	< 0.010	< 0.010	< 0.010	0.017	0.017	0.017	0 017	0.017	
Phenanthrene	υ	0.03	< 0.01	0.03	0 01	ea.	0.02	0.02	<0 01	0.02	0.061	0.061	0.061	0 061	0.061	
Pyrene a	Ŧ	< 0.01	0.02	0.02	< 0.01	A	< 0.01	< 0.01	<0 01	< 0.01	0.040	0.040	0.040	0 040	0.040	
Carcinogenic PAHs									-	-						
IACR (Coarse)		< 0.001	<0 001	< 0.001	<0.001		< 0.001	< 0.001	< 0.001	< 0.001			IACR < 1.0			
IACR (Fine)		<0.001	<0 001	< 0.001	<0.001		< 0.001	< 0.001	<0.001	< 0.001						
Benzo(a)anthracene		<0.01	<0.01	< 0.01	< 0.01		< 0.01	<0.01	<0 01	<0.01	0.083	0.083	0.083	0 083	0.083	
Benzo(a)pyrene		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	<0 05	< 0.05	0.60	0.60	0.77	0.77	0.77	
Benzo(b+j)fluoranthene		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	<0 05	< 0.05	6.2	6.2				
Benzo(g,h,i)perylene		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	<0 05	< 0.05	-					
Benzo(k)fluoranthene		<0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	<0 05	< 0.05	6.2	6.2				
Chrysene		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	<0 05	< 0.05	6.2	6.2				
Dibenzo(a,h)anthracene		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	<0 05	< 0.05	-					
Indeno(1,2,3-c,d)pyrene		< 0.05	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05	<0 05	< 0.05	-					

BOLD BOLD = Applicable Guideline Criteria

= Parameter Exceeds Recommended Guideline Criteria

*Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Table 1). May 2014.

(All concentrations in mg/kg = ppm, unle	ess noted)	
Grain size MUST PSA D50 > 75 um	12.7%	A1: 14-19 @ 2.0 m (fine-grained)
Grain size MUST PSA D50 > 75 um	42.6%	A6: 14-14 @ 3.5 m (fine-grained)

Grain size MUST PSA D50 > 75 um	81.3%	A6: 14-16 @ 7.5 m (coarse-grained)
Grain size MUST PSA D50 > 75 um	71.2%	A7:14-05 @ 7.5 m (coarse-grained)

IACR = Index of Additive Cancer Risk

OVC = Organic Vapour Concentration (ppmv)

--- = No value provided in guidelines

7

TITLE:	SOIL ANALYSES - METALS (AREA 5)
PROJECT#:	14-214-CRD
CLIENT:	The City of Edmonton
PROJECT:	Phase II Environmental Site Assesement
SITE:	Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW
LOCATION:	Edmonton, Alberta

		S	SAMPLE I DENT	IFICATION			201	2014 Alberta Tier 1 *				
		14-01	14-02	14-03	14-04		(Coarse Grained				
Depth (m)		1.5	2.5	0.5	1.0	Lar	nd Use	Posid	lential / Parkla	ad		
Soil		Silt	Silt	Silt	Silty Clay	Lai		Resid		iu		
Sample Date			27-Oc	t-2014		Natural Area	Agricultural	Residential / Parkland	Commercial	Industrial		
OVC		7.8	25.4	18.3	9.8			Parkianu				
Antimony		<0.2	<0.2	<0.2	<0.2	20	20	20	40	40		
Arsenic		5.5	5.5	6.9	6.3	17	17	17	26	26		
Barium		194	198	189	328	750	750	500	2,000	2,000		
Barite-barium		5.3	17.7	6.2	31.9	10,000	10,000	10,000	15,000	140,000		
Beryllium		0.4	0.4	0.6	0.8	5	5	5	8	8		
Boron (HWS)		0.7	2.87	1.87	6.11	2	2	2	2	2		
Cadmium	ы	0.18	0.22	0.13	0.25	3.8	1.4	10	22	22		
Chromium (total)		15.4	14.8	18.7	20.4	64	64	64	87	87		
Cr (VI)	Area	< 0.10	<0.10	<0.10	<0.10	0.4	0.4	0.4	1.4	1.4		
Cobalt	4	8.2	7.8	10.4	11.9	20	20	20	300	300		
Copper		18.4	17.2	20.6	23.9	63	63	63	91	91		
Lead		7.7	7.5	9.6	11.9	70	70	140	260	600		
Mercury (inorganic)		0.03	0.03	0.06	0.04	12	6.6	6.6	24	50		
Molybdenum		<1.0	<1.0	<1.0	<1.0	4	4	4	40	40		
Nickel		23.4	21.7	33.4	34.8	50	50	50	50	50		
Selenium		0.3	< 0.3	0.4	0.4	1	1	1	2.9	2.9		
Silver		<0.1	<0.1	<0.1	<0.1	20	20	20	40	40		
Thallium		0.16	0.15	0.2	0.25	1	1	1	1	1		
Tin		1.8	1.7	1.7	1.4	5	5	5	300	300		
Uranium		0.7	0.6	0.7	0.6	33	23	23	33	300		
Vanadium		24	25.8	31.4	36.1	130	130	130	130	130		
Zinc		45	44	51	75	200	200	200	360	360		

BOLD = A BOLD = I

Applicable Guideline Criteria
 Parameter Exceeds Recommended Guideline Criteria

*Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Table 1). May 2014.

(All concentrations in mg/kg = ppm, unless noted)

12.7%	A1: 14-19 @ 2.0 m (fine-grained)
42.6%	A6: 14-14 @ 3.5 m (fine-grained)
81.3%	A6: 14-16 @ 7.5 m (coarse-grained)
71.2%	A7:14-05 @ 7.5 m (coarse-grained)
	42.6% 81.3%

HWS = Hot Water Soluble

OVC = Organic Vapour Concentration (ppmv)

TITLE: PROJECT#: CLIENT: PROJECT: SITE:

LOCATION:

SOIL ANALYSES - POLYCYCLIC AROMATIC HYDROCARBONS (AREA 6)

T#: 14-214-CRD The City of Edmonton

T: Phase II Environmental Site Assessment

Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW

Edmonton, Alberta

8

					SAMPLE	IDENTIFICAT	ION						20	14 Alberta Tier :	1 *	
	14	-14	14-1	15		14	-16			14-17				Coarse Grained		
Depth (m)	4.0	5.0	3.0	6.0	1.5	2.5	4.5	7.5	3.5	5.5	6.5	lan	d Use	Deci	idential / Parkla	and
Soil	Clay Fill	Clay Fill	Sand/Debris	Silt	Sand/Debris	Silt/Ash	Silt	Sand/Gravel	Silt	Sand/Coal	Coal/Silt	Lain	a use	Resi	idential / Parkia	ano
Sample Date						3-Nov-2014						Natural Area	Agricultural	Residential /	Commercial	Industrial
OVC	31.1	14.1	31.2	25.0	44.8	50.8	34.3	51.4	34.2	29.2	26.1			Parkland		
cenaphthene	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.38	0.38	0.38	0.38	0.38
cenaphthylene	< 0.05	< 0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	- 22		التفقت	- Andrews
Inthracene	0.078	0.102	0.153	0.004	0.058	0.061	< 0.003	< 0.003	0.012	< 0.003	< 0.003	0.0056	0.0056	0.0056	0.0056	0.0056
luoranthene	0.31	0.19	0.52	0.01	0.19	0.4	< 0.01	< 0.01	0.04	0.01	0.01	0.039	0.039	0.039	0.039	0.039
luorene	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.34	0.34	0.34	0.34	0.34
laphthalene 🛛 🗢	0.024	0.027	0.034	< 0.010	0.075	0.019	0.019	< 0.010	0.015	0.015	0.013	0.017	0.017	0.017	0.017	0.017
Phenanthrene 🖇	0.24	0.24	0.39	0.03	0.17	0.15	0.01	< 0.01	0.06	0.03	0.03	0.061	0.061	0.061	0.061	0.061
Pyrene 🛛 🔾	0.29	0.21	0.52	0.02	0.15	0.46	< 0.01	< 0.01	0.04	0.01	0.01	0.040	0.040	0.040	0.040	0.040
arcinogenic PAHs																
IACR (Coarse)	0.64	0.464	0.849	< 0.001	0.088	0.933	< 0.001	<0.001	0.042	<0.001	< 0.001			IACR < 1.0		
IACR (Fine)	1.23	0.896	1.64	< 0.001	0.168	1.8	< 0.001	< 0.001	0.08	< 0.001	< 0.001					
Benzo(a)anthracene	0.16	0.11	0.26	< 0.01	0.06	0.25	< 0.01	< 0.01	0.02	<0.01	< 0.01	0.083	0.083	0.083	0.083	0.083
Benzo(a)pyrene	0.15	0.14	0.21	< 0.05	< 0.05	0.24	<0.05	< 0.05	<0.05	<0.05	<0.05	0.60	0.60	0.77	0.77	0.77
Benzo(b+j)fluoranthene	0.2	0.12	0.28	< 0.05	0.09	0.34	< 0.05	< 0.05	0.05	< 0.05	<0.05	6.2	6.2	1000	-	
Benzo(g,h,i)perylene	0.07	0.08	0.09	< 0.05	< 0.05	0.12	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	2	125	<u>- 21/20</u>	Stat BE	100000
Benzo(k)fluoranthene	0.12	0.09	0.15	< 0.05	<0.05	0.16	< 0.05	< 0.05	< 0.05	< 0.05	<0,05	6.2	6.2		فكبلتم	Same and Same
Chrysene	0.18	0.12	0.25	< 0.05	0.09	0.27	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	6.2	6.2			
Dibenzo(a,h)anthracene	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	-	077-0			ALL NOT A
Indeno(1,2,3-c,d)pyrene	0.08	0.08	0.11	< 0.05	< 0.05	0.15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	E	122			وستنقذ

BOLD

= Applicable Guideline Criteria

BOLD = Parameter Exceeds Recommended Guideline Criteria

*Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Table 1). May 2014.

(All concentrations in mg/kg = ppm, unless noted) Grain size MUST PSA D50 > 75 um 42.6%

42.6% A6: 14-14 @ 3.5 m (fine-grained)

Grain size MUST PSA D50 > 75 um 81.3% A6: 14-16 @ 7.5 m (coarse-grained)

IACR = Index of Additive Cancer Risk

OVC = Organic Vapour Concentration (ppmv)

--- = No value provided in guidelines

TITLE: LEACHATE ANALYSES - POLYCYCLIC AROMATIC HYDROCARBONS (AREA 6)

PROJECT#: 14-214-CRD

CLIENT: The City of Edmonton

PROJECT: Phase II Environmental Site Assessment

SITE: Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW

LOCATION: Edmonton, Alberta

9

		S	AMPLE I DENT	IFICATION			2014 EQGSW*	
Location		14-14	14-15	14-16	14-17	Land Use:	Protection of Ac	quatic Life (PAL)
Depth (m)		4.0	3.0	2.5	3.5		Anninulturnal	A ami au ditu ma lu
		Clay Fill	Sand/Debris	Silt/Ash	Silt	PAL	Agricultural:	Agricultural:
Sample Date			3-Nov	-2014			Irrigation	Livestock
Acenaphthene		< 0.0001	<0.0001	<0.0001	<0.0001	0.0058		
Acenaphthylene		< 0.0001	<0.0001	<0.0001	<0.0001			
Acridine		< 0.0001	< 0.0001	<0.0001	< 0.0001	0.0044		
Anthracene		<0.00005	< 0.000005	< 0.000005	< 0.000005	0.000012		
Fluoranthene		< 0.00001	<0.00001	<0.00001	<0.00001	0.00004		
Fluorene		< 0.0001	<0.0001	<0.0001	<0.0001	0.003		
Naphthalene	9	< 0.0001	<0.0001	<0.0001	<0.0001	0.001		
Phenanthrene		< 0.0001	<0.0001	<0.0001	<0.0001	0.0004		
Pyrene	Area	< 0.00001	<0.00001	<0.00001	0.00001	0.000025		
Carcinogenic PAHs (as B(a)P TPE)		<0.00001	<0.00001	<0.00001	<0.00001			
Benzo(a)anthracene		< 0.00001	< 0.00001	<0.00001	<0.00001	0.000018		
Benzo(a)pyrene		<0.00008	<0.00008	<0.00008	<0.00008	0.000015		
Benzo(b+j)fluoranthene		< 0.0001	< 0.0001	<0.0001	< 0.0001			
Benzo(g,h,i)perylene		< 0.00005	< 0.00005	<0.00005	<0.00005			
Benzo(k)fluoranthene		< 0.0001	< 0.0001	<0.0001	< 0.0001			
Chrysene		< 0.0001	< 0.0001	<0.0001	< 0.0001			
Dibenzo(a,h)anthracene		< 0.00005	<0.00005	<0.00005	<0.00005			
Indeno(1,2,3-c,d)pyrene		< 0.00005	< 0.00005	<0.00005	<0.00005			
Quinoline		<0.0003	<0.0003	<0.0003	<0.0003	0.0034		

BOLD = Appl BOLD = Para

Applicable Guideline Criteria
 Parameter Exceeds Recommended Guideline Criteria

*Environmental Quality Guidelines for Alberta Surface Waters (July 2014) (All concentrations in mg/L = ppm, unless noted)

--- = No value provided in guidelines

TABLE:	10
TITLE:	SOIL ANALYSES - METALS (AREA 6)
PROJECT#: CLIENT:	14-214-CRD The City of Edmonton
PROJECT:	Phase II Environmental Site Assesement
SITE:	Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW
LOCATION:	Edmonton, Alberta

															20	14 Alberta Tier 1	*	
	-	4-14		14-15			14-	16			14-	17				Coarse Grained		
Depth (m)	3.5	5.0	3.0	6.0	6.5	1.5	2.0	2.5	4.5	3.5	5.5	6.5	8.0	Lar	nd Use	Resid	lential / Parkla	nd
Soil	Clay Fill	Clay Fill	Sand/Debris	Silt	Silt/Sand	Sand/Debris	Silt/Debris	Silt/Ash	Silt	Silt	Sand/Coal	Coal/Silt	Sand/Gravel	Edi		Resid		id.
Sample Date							3-Nov-2014							Natural Area	Agricultural	Residential / Parkland	Commercial	Industrial
OVC	19.6	14.1	31.2	25	8.1	44.8	46.7	50.8	34.3	34.2	29.2	26.1	27.0					
рН	7.7	8.2	7.4	7.8	NM	NM	NM	7.5	7.8	8.0	6.2	5.7	NM			6 - 8.5		
Antimony	<0.2	<0.2	0.2	<0.2	<0.2	0.7	<0.2	0.2	<0.2	<0.2	0.3	0.3	<0.2	20	20	20	40	40
Arsenic	6.8	7	9.7	9	5.3	41	9.8	12.9	5.9	6.8	4.9	5.2	5.5	17	17	17	26	26
Barium	469	325	856	702	284	1,630	654	642	320	320	1,460	1,750	387	750	750	500	2,000	2,000
Barite-barium	6.2	12	4.2	4.2	18.8	31.2	24.5	3.8	9.7	28.2	16.2	7.7	33.9	10,000	10,000	10,000	15,000	140,000
Beryllium	1	0.8	1.4	1.3	0.7	2.8	1.2	1.2	0.7	0.7	2.2	2.6	0.7	5	5	5	8	8
Boron (HWS)	19.2	9.58	27.6	33.1	11.6	17.6	15.4	18.2	29.6	9.56	37.5	30.9	3.42	2	2	2	2	2
Cadmium	0.20	0.3	0.33	0.33	0.16	3.16	0.60	0.42	0.25	0.29	0.09	0.11	0.16	3.8	1.4	10	22	22
Chromium (total)	15.3	19.2	13.8	16	13.8	19.2	17.2	13.7	14.9	17.5	4.7	5	11.1	64	64	64	87	87
Cr (VI)	< < 0.10	<0.10	< 0.10	< 0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.4	0.4	0.4	1.4	1.4
Cobalt	9.5	10.3	9.1	10.6	7.5	11.7	8.9	9.3	8.9	10	5.6	6.5	6.6	20	20	20	300	300
Copper	29.7	23.5	54.2	21.8	12.8	79.6	31.5	25.8	21.7	20.7	12	13.9	11.9	63	63	63	91	91
Lead	28.7	13.5	34.2	16.3	7.1	148	43.4	49.8	16.5	18.3	7.5	8.4	<4.9	70	70	140	260	600
Mercury (inorganic)	0.39	0.11	0.27	0.09	0.06	1.15	1.07	0.5	0.08	0.06	0.06	0.06	0.02	12	6.6	6.6	24	50
Molybdenum	1.1	1.0	1.5	2.5	1.1	4.5	1.4	1.9	1.0	<1.0	8.2	3.8	1.4	4	4	4	40	40
Nickel	25.9	28.4	25	26.4	28.1	38.2	40.0	26.2	23.5	28.9	17.4	18.6	27.9	50	50	50	50	50
Selenium	0.5	0.4	0.4	0.5	< 0.3	0.7	0.5	0.6	0.3	0.4	1.2	0.8	< 0.3	1	1		2.9	2.9
Silver	0.1	0.1	0.2	0.2	0.1	0.8	0.2	0.2	0.1	0.2	0.2	0.3	< 0.1	20	20	20	40	40
Thallium	0.23	0.25	0.27	0.26	0.15	0.97	0.26	0.29	0.19	0.24	0.17	0.17	0.11		 		300	1
Tin	1.1	1.1	1.4	1.2	2.2	2.4	2.0	1.4	1.1	<1.0	2.3	2.3	3.1	5	5	5		300
Uranium Vanadium	1.1	1	1.6	1.5	1.0	3.2	1.4	1.3	0.9	0.9	4.9 17	,	1.0	33	23 130	23 130	<u>33</u> 130	300 130
Zinc	27.7	32.3 73	27.3 88	<u>31.5</u> 67	23.1 41	34.2	26.7 73	<u>26.9</u> 69	25.7 53	30.4	17	<u>19.7</u> 13	26.4	130 200	200	200	360	360
	72	/3	88	0/	41	147	13	69	53	74		13	27	200	200	200	300	300

BOLD = Applicable Guideline Criteria

= Parameter Exceeds Recommended Guideline Criteria

*Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Table 1). May 2014.

(All concentrations in mg/kg = ppm, unless noted)

Grain size MUST PSA D50 > 75 um Grain size MUST PSA D50 > 75 um

42.6% A6: 14-14 @ 3.5 m (fine-grained) 81.3% A6: 14-16 @ 7.5 m (coarse-grained)

HWS = Hot Water Soluble

OVC = Organic Vapour Concentration (ppmv)

TABLE:11TITLE:SOIL ANALYSES - PETROLEUM HYDROCARBONS (AREA 7)PROJECT#:14-214-CRDCLIENT:The City of EdmontonPROJECT:Phase II Environmental Site AssesementSITE:Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NWLOCATION:Edmonton, Alberta

	Coarse Grained	Benzene	Toluene	Ethylbenzene	Xylenes	Fraction 1	Fraction 2	Fraction 3	Fraction 4
2014 Alberta	Natural Area	0.078	0.12	0.21	28	210	150	300	2,800
Tier 1*	Agricultural	0.073	0.12	0.21	12	24	130	300	2,800
	Residential / Parkland	0.073	0.12	0.21	12	24	130	300	2,800
Surface Soil	Commercial	0.078	0.12	0.21	28	270	260	1,700	3,300
Suitace Soli	Industrial	0.078	0.12	0.21	28	270	260	1,700	3,300

Surface Soil					Benzene	Toluene	Ethylbenzene	Xylenes	Fraction 1	Fraction 2	Fraction 3	Fraction 4
Land Use		Corr	nmercial		0.078	0.12	0.21	28	270	260	1,700	3,300
Sample ID	Depth (m)	Soil	Date	OVC								
Area 7												
14-07	2.3	Silt	28-Oct-2014	50.6	< 0.005	< 0.02	<0.010	< 0.03	<10	<50	<50	<100

BOLD = Applicable Guideline Criteria

BOLD = Parameter Exceeds Recommended Guideline Criteria

*Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Table 1). May 2014.

(All concentrations in mg/kg = ppm, unless noted)

Grain size MUST PSA D50 > 75 um 71.2% A7:14-05 @ 7.5 m (coarse-grained)

 $\begin{array}{ll} \mbox{Fraction 1} = C_6 \mbox{ to } C_{10} \mbox{ (-BTEX)} & \mbox{Fraction 3} = > C_{16} \mbox{ to } C_{34} \\ \mbox{Fraction 2} = > C_{10} \mbox{ to } C_{16} & \mbox{Fraction 4} = C_{35} + \\ \mbox{OVC} = \mbox{Organic Vapour Concentration (ppmv)} \end{array}$

TABLE:11TITLE:SOIL ANALYSES - PETROLEUM HYDROCARBONS (AREA 7)PROJECT#:14-214-CRDCLIENT:The City of EdmontonPROJECT:Phase II Environmental Site AssesementSITE:Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NWLOCATION:Edmonton, Alberta

	Coarse Grained	Benzene	Toluene	Ethylbenzene	Xylenes	Fraction 1	Fraction 2	Fraction 3	Fraction 4
2014 Alberta	Natural Area	0.078	0.12	0.21	28	700	520	2,500	10,000
Tier 1*	Agricultural	0.078	0.12	0.21	16	30	160	2,500	10,000
	Residential / Parkland	0.078	0.12	0.21	16	30	160	2,500	10,000
Subsoil	Commercial	0.078	0.12	0.21	28	440	520	3,500	10,000
Subsoli	Industrial	0.078	0.12	0.21	28	440	520	3,500	10,000

Subsoil					Benzene	Toluene	Ethylbenzene	Xylenes	Fraction 1	Fraction 2	Fraction 3	Fraction 4
Land Use		Com	nmercial		0.078	0.12	0.21	28	440	520	3,500	10,000
Sample ID	Depth (m)	Soil	Date	OVC								
Area 7												
14-05	3.8	Silt		34.8	< 0.005	< 0.02	< 0.010	< 0.03	<10	<50	<50	<100
14-05	7.5	Gravel		34	< 0.005	0.04	< 0.010	< 0.03	<10	<50	66	<100
14-06	8.3	Gravel	28-Oct-2014	34.1	< 0.005	< 0.02	< 0.010	0.03	<10	<50	<50	<100
14-00	9.8	Gravel		28.9	< 0.005	< 0.02	< 0.010	0.03	<10	<50	<50	<100
14-07	10.5	Gravel		33.9	< 0.005	< 0.02	<0.010	< 0.03	<10	<50	<50	<100

BOLD =

= Applicable Guideline Criteria

= Parameter Exceeds Recommended Guideline Criteria

*Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Table 3). May 2014. Ecological Direct Contact Pathway has been excluded for PHC Fractions 1 to 4. (All concentrations in mg/kg = ppm, unless noted) Grain size MUST PSA D50 > 75 um 71.2% A7:14-05 @ 7.5 m (coarse-grained)

 $\begin{array}{lll} \mbox{Fraction 1} = C_6 \mbox{ to } C_{10} \mbox{ (-BTEX)} & \mbox{Fraction 3} = > C_{16} \mbox{ to } C_{34} \\ \mbox{Fraction 2} = > C_{10} \mbox{ to } C_{16} & \mbox{Fraction 4} = C_{35} + \\ \mbox{OVC} = \mbox{Organic Vapour Concentration (ppmv)} \end{array}$

TABLE: TITLE

12

TITLE:	GROUNDWATER MONITORING DATA
PROJECT#:	14-214-CRD
CLIENT:	The City of Edmonton
PROJECT:	Phase II Environmental Site Assesement
SITE:	Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW
LOCATION:	Edmonton, Alberta

				Installatio	n Data								Monito	ring Data		
		Towners	Height of	Total				Screen				Groundwa	iter from Top	of Casing (m)	OVC	Product
Monitoring Well	Install Date	Top of Casing Elevation (m)	Stickup (m)*	Depth (mbg)	Тор	Dep	Bottom	Тор	levat	Bottom	Monitor Date	Depth	Elevation	Total Depth*	(ppmv)	Thickness (cm)
Area 1																
14-18	19-Nov-2014	624.935	-	10.5	7.5	-	10.5	617.44	-	614.44	20-Nov-2014	8.68	616.26	10.34	0.1	ND
Area 2	0	T	-		1			T			n -	ſ		1		T
C1	27-Jul-2004	624.893	0.54	9 67	5.1	-	9 67	619.79	-	615 22	20-Nov-2014	8.68	616.21	10.35	ND	ND
C6	27-Jul-2004	624.823	0.65	8.99	4.42	-	8.99	620.40	-	615 83	20-Nov-2014	8.40	616.42	8.87	ND	ND
C7	27-Jul-2004	625.008	0.65	8 82	4.25	-	8 82	620.76	-	616.19	20-Nov-2014	8.64	616.37	9.56	ND	ND
Area 3	0	T			1			T			n -	ſ		1		T
MW1	23-Jul-2001	NM	-	9.75	6.75	-	9.75		-		21-Nov-2014	dry	-	5.47	0.6	ND
MW108	12-Oct-2001	NM	-	9.14	6.14	-	9.14		-		21-Nov-2014	dry	-	7.68	ND	ND
MW109	12-Oct-2001	623.669	-	9.45	6.45	-	9.45	617.22		614 22	21-Nov-2014	9.53	614.14	9.54	ND	ND
MW201	6-Dec-2001	623.531	-	10.61	7.61	-	10.61	615.92		612.92	21-Nov-2014	9.32	614.21	9.42	ND	ND
MW202	6-Dec-2001	622.683	-	11.76	8.76	-	11.76	613.92		610.92	21-Nov-2014	10.47	612.21	10.69	ND	ND
	(D. 0004										21-Nov-2014	9.173	-	11.38	ND	ND
MW203	6-Dec-2001	NM	-	11.11	8.11	-	11.11		-		18-Dec-2014	8.92	-	11.10	ND	ND
											21-Nov-2014	8.27	614.20	10.31	ND	ND
14-09	30-Oct-2014	622.472	-	11.6	8.6	-	11.6	613.87	-	610 87	18-Dec-2014	7.99	614.99	10.33	0.4	ND
Area 5																
14-01	27-Oct-2014	623.844	-	9.2	6.2	-	9.2	617.64		614 64	21-Nov-2014	7.31	616.53	9.04	ND	ND
14-02	27-Oct-2014	624.679		7.6	4.6		7.6	620.08		617 08	21-Nov-2014	7.62	617.06	7.66	ND	ND
14-02	27-001-2014	024.079	-	7.0	4.0	-	7.0	020.08	-	017 00	18-Dec-2014	7.62	615.36	7.67	0.4	ND
Area 6																
14-15	3-Nov-2014	625.968	0.89	10.7	7.7	-	10.7	617.38	-	614 38	20-Nov-2014	10.55	615.42	11.62	ND	ND
14-17	3-Nov-2014	625.994	0.95	10.7	7.7	-	10.7	617.34	-	614 34	20-Nov-2014	10.34	615.65	11.58	ND	ND
Area 7	II	r	l I		1						m		T			r
14-05	28-Oct-2014	622.958	-	11.0	8.0	-	11.0	614.96	-	611.96	21-Nov-2014	8.61	614.35	10.82	ND	ND
14-06	28-Oct-2014	622.980	-	11.0	8.0	-	11.0	614.98	-	611.98	21-Nov-2014	8.67	614.31	10.96	ND	ND
14-07	28-Oct-2014	622.875	-	11.0	8.0		11.0	614.88		611 88	21-Nov-2014	8.56	614.32	10.41	ND	ND
					5.0			211100		2 00	18-Dec-2014	8.33	614.55	10.50	ND	ND

(All concentrations in parts per million by volume = ppmv, unless noted) * = Measured Depth on Date of Monitoring OVC = Organic Vapour Concentration ND = Non-detect (<0.1 ppmv OVC or < 1mm free product thickness)

NM = Not Measured

TABLE:	13
TITLE:	GROUNDWATER QUALITY DATA
PROJECT#:	14-214-CRD
CLIENT:	The City of Edmonton
PROJECT:	Phase II Environmental Site Assesement
SITE:	Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW
LOCATION:	Edmonton, Alberta

Comple ID	Samula Data	OVC			Parameter		
Sample ID	Sample Date	(ppmv)	рН	ORP	DO	EC	Temp (°C)
Area 1							
14-18	20-Nov-2014	0.1	6.79	39	5.15	2,921	7.61
Area 2							
C1		ND	6.91	180	0.58	965.2	7.90
C6	20-Nov-2014	ND	6.93	179	1.38	472.0	7.45
C7		ND	6.82	195	1.52	809.4	8.05
Area 3							
14-09	21-Nov-2014	ND	6.79	173	1.70	930.7	7.34
Area 5							
14-01	21-Nov-2014	ND	6.96	138	1.22	452.0	7.44
Area 7							
14-05	21-Nov-2014	ND	6.83	145	2.14	948.7	10.47
14-06	21-1007-2014	ND	7.06	141	5.77	1,014	10.30

OVC = Organic Vapour Concentration (ppmv)

ORP = Oxygen Redox Potential (mV)

DO = Dissolved Oxygen (mg/L)

EC = Electrical Conductivity (μ S/cm @25°C)

ND = Non-detect (<0.1 ppm OVC or < 1mm free product thickness)

NM = Not Measured

TABLE:	14
TITLE:	GROUNDWATER ANALYSES - DISSOLVED METALS
PROJECT#:	14-214-CRD
CLIENT:	The City of Edmonton
PROJECT:	Phase II Environmental Site Assesement
SITE:	Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW
LOCATION:	Edmonton, Alberta

					SAMPLE I DEI	NTIF	ICATION						20	14 Alberta Tier 1	1 *		
		14-18		14-09	MW203		14-01			14-15	14-17			Coarse Grained			2014 EQGSW***
Depth (m)		8.68		8 27	9.17		7.31			10.55	10.34	Lan	nd Use				
Sample Date		21-Nov-2014		21-No	/-2014		21-Nov-2014			20-Nov	v-2014	Natural Area	Agricultural	Residential / Parkland	Commercial	Industrial	Protection of Aquatic Life
OVC		0.1		ND	ND		ND			ND	ND			Parkianu			(Area 6)
Hardness [CaCO ₃]		1,360		470	489		1,360			548	428	-					
pH		NM		7.47	7.61		7.91			NM	NM			6.5 - 8.5			6.5 - 9
Aluminum		< 0.002		<0.002	< 0.002		0.004			< 0.002	< 0.002	0.050	0.050	0.050	0.050	0.050	0 05
Antimony		< 0.0002		0.0002	<0 0002		< 0.0002			< 0.0002	< 0.0002	0.006	0.006	0.006	0.006	0.006	
Arsenic		0.0004		0.0003	<0 0002		0.0003			0.0003	0.0002	0.005	0.005	0.005	0.005	0.005	0.005
Barium		0.459	*	0.159	0.136		0.124			0.103	0.103	1	1	1	1	1	
Boron	1	0 229	* m	0.099	0.091	a 5	0.028	ž	9 E	0.44	0.411	1.5	0.5	1.5	1.5	1.5	1.5
Cadmium	reâ	0.000136	ea	0.000072	<0.00001	rea	0.00001	, i	reâ	0.000022	0.00003	0.00037	0.00037	0.00037	0.00037	0 00037	0.00037
Cr(III)	A	< 0.0005	Are	<0.0005	<0 0005	∢	< 0.0005	<	\triangleleft	< 0.0005	<0.0005	0.0089	0.0049	0.0089	0.0089	0.0089	0.0089
Cr(VI)		<0 01		<0.01	<0.01		< 0.01			<0 01	< 0.01	0.001	0.001	0.001	0.001	0.001	0.001
Copper		< 0.001		0.002	<0.001		< 0.001			< 0.001	< 0.001	0.007	0.007	0.007	0.007	0.007	0.007
Iron		<0 01		<0.01	<0.01		< 0.01			<0 01	<0.01	0.3	0.3	0.3	0.3	0.3	0.3
Lead		< 0.0001		<0.0001	<0 0001		<0.0001			<0.0001	<0.0001	0.007	0.007	0.007	0.007	0.007	0.007
Manganese		0.756		0.548	0.008		0.330			0.344	1.29	0.05	0 05	0.05	0.05	0.05	
Mercury		<0 000005		<0.000005	<0.00005		<0.000005			<0 000005	< 0.000005	0.000005	0 000005	0.000005	0.000005	0.000005	0.000005
Nickel		0.0037		0.0024	0.0007		< 0.0005			0 002	0.0015	0.177	0.177	0.177	0.177	0.177	0.177
Selenium		0.0011		0.0005	0.0005		0.0003			0.0006	< 0.0002	0.001	0.001	0.001	0.001	0.001	0.001
Silver		< 0.00001		<0.00001	<0.00001		< 0.00001			< 0.00001	<0.00001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Uranium		0.0047		0.0019	0.0016		0.0012			0.0039	0.0037	0.015	0 01	0.015	0.015	0.015	0.015
Zinc		0 003		0.062	0.004		0.004			0 001	0.003	0.03	0 03	0.03	0.03	0.03	0 03

BOLD

= Applicable Guideline Criteria

= Parameter Exceeds Recommended Guideline Criteria

*Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Table 2). May 2014.

**Vapour Inhalation and Ecological Direct Contact Guidelines for Residential / Parkland Land Use Applied for 30-m Buffer (however, receptors not active for metals)

***Environmental Quality Guidelines for Alberta Surface Waters (July 2014)

(All concentrations in mg/L = ppm, unless noted)

Grain size MUST PSA D50 > 75 um	12.7%	A1: 14-19 @ 2.0 m (fine-grained)
Grain size MUST PSA D50 > 75 um	42.6%	A6: 14-14 @ 3.5 m (fine-grained)
Grain size MUST PSA D50 > 75 um	81.3%	A6: 14-16 @ 7.5 m (coarse-grained)
Grain size MUST PSA D50 > 75 um	71.2%	A7:14-05 @ 7.5 m (coarse-grained)

Note 1: Guideline value is Hardness Dependent = 10 raised to the power of (0.83[log(Hardness)]-2.46)

NOTE: Mercury guideline is for total mercury.

OVC = Organic Vapour Concentration (ppmv)

ND = Non-detect (<0.1 ppmv OVC)

--- = No value provided in guidelines

 TABLE:
 15

 TITLE:
 GROUNDWATER ANALYSES - POLYCYCLIC AROMATIC HYDROCARBONS

 PROJECT#:
 14-214-CRD

 CLIENT:
 The City of Edmonton

 PROJECT:
 Phase II Environmental Site Assessment

 SITE:
 Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW

 LOCATION:
 Edmonton, Alberta

						SAMPLE IDEN	NTIFICATION							201	4 Alberta Tier 1	*		2014 EQGSW***
		C1	C6	C7		14-09	MW203		14-01		14-15	14-17		(Coarse Grained			2014 EQ03W
Depth (m)		8.68	8.40	8.64		8 27	9.17		7 31		10 55	10.34	Lar	d Use				Protection of
Sample Date			21-Nov-2014			21-No	v-2014		21-Nov-2014		20-No	v-2014	Natural Area	Agricultural	Residential / Parkland	Commercial	Industrial	Aquatic Life (Area
OVC		ND	ND	ND		ND	ND		ND		ND	ND			Parkianu			6)
Pentachlorophenol		< 0.0001	<0 0001	<0.0001		NM	NM		NM		NM	NM	0 0005	0.0005	0.0005	0.0005	0 0005	
Acenaphthene		< 0.0001	<0 0001	<0.0001		<0 0001	< 0.0001		<0 0001		< 0.0001	< 0.0001	0 0058	0.0058	0.0058	0.0058	0 0058	0.0058
Acenaphthylene		< 0.0001	<0 0001	<0.0001		<0 0001	< 0.0001		<0 0001		< 0.0001	< 0.0001	-					
Acridine		< 0.0001	<0 0001	<0.0001		<0 0001	< 0.0001		<0 0001		< 0.0001	< 0.0001	-					0.0044
Anthracene		< 0.000005	<0 000005	< 0.000005		<0 000005	< 0.000005		<0 000005		0.000035	< 0.000005	0 000012	0.000012	0.000012	0.000012	0 000012	0.000012
Fluoranthene		< 0.00001	< 0.00001	<0 00001		< 0.00001	0.00002		< 0.00001		0.00009	0.00003	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004
Fluorene	2	< 0.0001	<0 0001	< 0.0001	*	<0 0001	< 0.0001	10	<0 0001	v.	< 0.0001	< 0.0001	0.003	0.003	0.003	0.003	0.003	0.003
Naphthalene	g	< 0.0001	<0 0001	< 0.0001	ŝ	<0 0001	< 0.0001	g	<0 0001	g	< 0.0001	< 0.0001	0.001	0.001	0.001	0.001	0.001	0.001
Phenanthrene	Are	< 0.0001	<0 0001	< 0.0001	ea.	<0 0001	< 0.0001	Are	<0 0001	Are	< 0.0001	< 0.0001	0 0004	0.0004	0.0004	0.0004	0 0004	0.0004
Pyrene	~	< 0.00001	< 0.00001	<0 00001	Ā	< 0.00001	0.00001	~	< 0.00001	~	0.00010	0.00004	0 000025	0.000025	0.000025	0.000025	0 000025	0.000025
Quinoline		< 0.0003	<0 0003	< 0.0003		<0 0003	< 0.0003		<0 0003		< 0.0003	< 0.0003	-					0.0034
Carcinogenic PAHs (as B(a)P TPE)		<0.00001	<0.00001	<0 00001		< 0.00001	<0.00001		< 0.00001		0.00008	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001	
Benzo(a)anthracene		< 0.00001	< 0.00001	<0 00001		< 0.00001	< 0.00001		< 0.00001		0.00006	0.00001	0 000018	0.000018	0.000018	0.000018	0 000018	0.000018
Benzo(a)pyrene		<0.00008	<0 000008	<0.00008		<0 000008	< 0.000008		<0 000008	1	0.000072	0.000020	0 000015	0.000015	0.000015	0.000015	0 000015	0.000015
Benzo(b+j)fluoranthene		< 0.0001	<0 0001	< 0.0001		<0 0001	< 0.0001		<0 0001		< 0.0001	< 0.0001	-					
Benzo(g,h,i)perylene		< 0.00005	< 0.00005	<0 00005		< 0.00005	< 0.00005		< 0.00005		<0 00005	< 0.00005	-					
Benzo(k)fluoranthene		< 0.0001	<0 0001	< 0.0001		<0 0001	< 0.0001		<0 0001		< 0.0001	< 0.0001	-					
Chrysene		< 0.0001	<0 0001	<0.0001		<0 0001	< 0.0001		<0 0001		< 0.0001	< 0.0001	-					
Dibenz(a,h)anthracene		< 0.00005	< 0.00005	<0 00005		< 0.00005	< 0.00005		< 0.00005		<0 00005	< 0.00005	-					
Indeno(1,2,3-c,d)pyrene		<0.00005	< 0.00005	<0 00005		< 0.00005	< 0.00005		< 0.00005		<0 00005	< 0.00005	-					

BOLD = Applicable Guideline Criteria

BOLD

= Parameter Exceeds Recommended Guideline Criteria = Detectable Parameter Concentration

*Alberta Tier 1 Soil and Groundwater Remediat on Guidelines (Table 2). May 2014.

**Vapour Inhalation and Ecological Direct Contact Guidelines (Case 32), http://www.anal.com/anal.co

(All concentrations in mg/L = ppm, unless noted)

Grain size MUST PSA D50 >	75 um	12.7%	A1: 14-19 @ 2.0 m (fine-grained)
Grain size MUST PSA D50 >	75 um	42.6%	A6: 14-14 @ 3.5 m (fine-grained)
Grain size MUST PSA D50 >	75 um	81.3%	A6: 14-16 @ 7.5 m (coarse-grained)
Grain size MUST PSA D50 >	75 um	71.2%	A7:14-05 @ 7.5 m (coarse-grained)

OVC = Organic Vapour Concentration (ppmv)

ND = Non-detect (<0.1 ppmv OVC)

---- = No value provided n guidelines

TITLE: PROJECT#: CLIENT: PROJECT: SITE: LOCATION: GROUNDWATER ANALYSES - POLYCHLORINATED DIBENZO(p)DIOXINS & DIBENZOFURANS (AREA 2)

14-214-CRD

The City of Edmonton Phase II Environmental Site Assesement

Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW

Edmonton, Alberta

16

		SAMPLE	IDENTIFICATIO	DN .		20	14 Alberta Tier	1 *	
		C1	C6	C7			Coarse Grained		
Depth (m)		8.68	8.4	8.64	Lanc	Use	Reside	ential / Parkl	and
Sample Date			21-Nov-2014		Natural Area	Agricultural	Residential / Parkland	Commercial	Industrial
OVC		ND	ND	ND			Parkianu		
Total PCDD/F TEQ		ND	ND	1E-11					
Total Dioxin		ND	ND	1E-11					
2,3,7,8-TCCD		<1E-09	<1E-09	<1E-09					
Total TCDD		<1E-09	2.4E-09	<1E-09					
1,2,3,7,8-PeCDD		<2E-09	<2E-09	<2E-09					
Total PeCDD		<2E-09	3E-09	<2E-09					
1,2,3,4,7,8-HxCDD		<2E-09	<2E-09	<2E-09					
1,2,3,6,7,8-HxCDD		<2E-09	<2E-09	<2E-09					
1,2,3,7,8,9-HxCDD		<2E-09	<2E-09	<2E-09					
Total HxCDD		<2E-09	<2E-09	<2E-09					
1,2,3,4,6,7,8-HpCDD		<3E-09	<3E-09	<3E-09					
Total HpCDD	a 2	<3E-09	<3E-09	<3E-09	-				
OCDD	Area	<4E-09	<4E-09	6.3E-09					
Total Furan	A	ND	ND	ND					
2,3,7,8-TCDF		<1E-09	<1E-09	<1E-09	1.2E-07	1.2E-07	1.2E-07	1.2E-07	1.2E-07
Total TCDF		<1E-09	3.7E-09	<1E-09	1				
1,2,3,7,8-PeCDF		<2E-09	<2E-09	<2E-09	1				
2,3,4,7,8-PeCDF		<2E-09	<2E-09	<2E-09					
Total PeCDF		<2E-09	<2E-09	<2E-09					
1,2,3,4,7,8-HxCDF		<2E-09	<2E-09	<2E-09	1				
1,2,3,6,7,8-HxCDF		<2E-09	<2E-09	<2E-09					
1,2,3,7,8,9-HxCDF		<2E-09	<2E-09	<2E-09	1				
2,3,4,6,7,8-HxCDF		<2E-09	<2E-09	<2E-09	-				
Total HxCDF		2.6E-09	<2E-09	<2E-09	1				
1,2,3,4,6,7,8-HpCDF		<3E-09	<3E-09	<3E-09	1				
1,2,3,47,8,9-HpCDF									
Total HpCDF		<3E-09	<3E-09	<3E-09	1				
OCDF		<4E-09	<4E-09	<4E-09					

Applicable Guideline Criteria
 Parameter Exceeds Recommended Guideline Criteria

*Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Table 2). May 2014.

BOLD

(All concentrations in mg/c = ppm, unless note	su)		
Grain size MUST PSA D50 > 75 um	12.7%	A1: 14-19 @ 2.0 m	(fine-grained)
Grain size MUST PSA D50 > 75 um	42.6%	A6: 14-14 @ 3.5 m	(fine-grained)
Grain size MUST PSA D50 > 75 um	81.3%	A6: 14-16 @ 7.5 m	(coarse-grained)
Grain size MUST PSA D50 > 75 um	71.2%	A7:14-05 @ 7.5 m	(coarse-grained)

PCDD/F = Polychlorinated Dibenzo(p)dioxins and Dibenzofurans

OVC = Organic Vapour Concentration (ppmv)

ND = Non-detect (<0.1 ppmv OVC or non-detectable in analysis)

TEQ = Toxic Equivalent

--- = No value provided in guidelines

 $\mathsf{TCDD/F} = \mathsf{Tetrachlorodibenzo-} p \cdot \mathsf{dioxin/dibenzofuran}$

PeCDD/F = Pentachlorodibenzo-*p*-dioxin/dibenzofuran

HxCDD/F = Hexachlorodibenzo-p-dioxin/dibenzofuran

HpCDD/F = Heptachlorodibenzo-*p*-dioxin/dibenzofuran OCDD/F = Octachlorodibenzo-*p*-dioxin/dibenzofuran

Nichols Environmental (Canada) Ltd.

TABLE:

17

TITLE:GROUNDWATER ANALYSES - PETROLEUM HYDROCARBONS (AREAS 3 & 7)PROJECT#:14-214-CRDCLIENT:The City of EdmontonPROJECT:Phase II Environmental Site AssesementSITE:Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NWLOCATION:Edmonton, Alberta

	Coarse Grained	Benzene	Toluene	Ethylbenzene	Xylenes	Fraction 1	Fraction 2	Fraction 3	Fraction 3+
	Natural Area	0.005	0.021	0.0024	0.3	2.2	1.1	-	-
2014 Alberta	Agricultural	0.005	0.021	0.0024	0.3	0.81	1.1		
Tier 1*	Residential / Parkland	0.005	0.021	0.0024	0.3	0.81	1.1		
	Commercial	0.005	0.021	0.0024	0.3	2.2	1.1		
	Industrial	0.005	0.021	0.0024	0.3	2.2	1.1		

				Benzene	Toluene	Ethylbenzene	Xylenes	Fraction 1	Fraction 2	Fraction 3	Fraction 3+
Land Use				0.005	0.021	0.0024	0.3	0.81/2.2	1.1		
Sample ID	Depth (m)	Date	OVC								
Area 3**											
MW203	8.92	18-Dec-2014	ND	< 0.001	< 0.0005	< 0.001	< 0.002	<0.1	<0.1	0.3	0.7
14-09	7.99	10-Dec-2014	0.4	< 0.001	< 0.0005	<0.001	< 0.002	<0.1	<0.1	<0.1	0.3
Area 7											
14-05	8.61	21-Nov-2014	ND	< 0.001	< 0.001	< 0.001	< 0.001	<0.2	<0.2	<0.1	<0.1
14-06	8.67	21-1107-2014	ND	< 0.001	<0.001	<0.001	<0.001	<0.2	<0.2	<0.1	<0.1
14-07	8.33	18-Dec-2014	ND	< 0.001	<0.0005	<0.001	< 0.002	<0.1	<0.1	<0.1	0.3

= Applicable Guideline Criteria

= Parameter Exceeds Recommended Guideline Criteria

*Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Table 2). May 2014.

**Vapour Inhalation and Ecological Direct Contact Guidelines for Residential / Parkland Land Use Applied for 30-m Buffer (Fraction 1 affected)

(All concentrations in mg/L = ppm, unless noted)

BOLD

BOLD

Grain size MUST PSA	D50 > 75 um	12.7%	A1: 14-19 @ 2.0 m	(fine-grained)
Grain size MUST PSA	D50 > 75 um	42 6%	A6: 14-14 @ 3.5 m	(fine-grained)
Grain size MUST PSA	D50 > 75 um	81 3%	A6: 14-16 @ 7.5 m	(coarse-grained)
Grain size MUST PSA	D50 > 75 um	71 2%	A7:14-05 @ 7.5 m	(coarse-grained)

Fraction 1 = C_6 to C_{10} (-BTEX)

Fraction 2 = $> C_{10}$ to C_{16}

OVC = Organic Vapour Concentration (ppmv)

ND = Non-detect (<0.1 ppmv OVC)

--- = No value provided in guidelines

TITLE:

TABLE:

GROUNDWATER ANALYSES - ROUTINE PARAMETERS (AREAS 3 & 5)

PROJECT#:	14-214-CRD
CLIENT:	The City of Edmonton
PROJECT:	Phase II Environmental Site Assesement
SITE:	Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW
LOCATION:	Edmonton, Alberta

18

	SAMPLE IDENTIFICATION					2014 Alberta Tier 1 *				
		14-09	MW203		14-01			Coarse Grained		
Depth (m)		8.27	9.17		7.31	Lanc	Use			
Sample Date		21-Nov	/-2014		21-Nov-2014	Natural Area	Agricultural	Residential / Parkland	Commercial	Industrial
OVC		ND	ND		ND			Faikialiu		
рН		7.47	7.61		7.91			6.5 - 8.5		
Bicarbonate		477	508		233	-				
Electrical Conductivity (µS/cm)	*	1210	831		452	-	1,000			
Total Dissolved Solids	3*	470	540	a 5	285	500	500	500	500	500
Calcium	Area	140	146	Area	67.8	-				
Chloride	A	159	18.7		7.2	120	100	120	120	120
Potassium		5	2.3		2.3	-				
Magnesium		29.2	30.6		16.9	-				
Nitrate		1.59	1.01		0.27	3	3	3	3	3
Nitrate + Nitrite		1.6	1.01		0.27	-				
Nitrite		0.012	<0.005		< 0.005	0.24	0.24	0.24	0.24	0.24
Sodium		126	15.4		13.7	200	200	200	200	200
Sulphate		75.2	77.8		61.9	429	429	429	429	429

= Applicable Guideline Criteria

= Parameter Exceeds Recommended Guideline Criteria

*Alberta Tier 1 Soil and Groundwater Remediation Guidelines (Table 2). May 2014.

**Vapour Inhalation and Ecological Direct Contact Guidelines for Residential / Parkland Land Use Applied for 30-m Buffer (however, receptors not active for listed parameters)

(All concentrations in mg/kg = ppm, unless noted)

BOLD

BOLD

· · · · · · · · · · · · · · · · · · ·	'		
Grain size MUST PSA D50 > 75 um	12.7%	A1: 14-19 @ 2 0 m	(fine-grained)
Grain size MUST PSA D50 > 75 um	42.6%	A6: 14-14 @ 3 5 m	(fine-grained)
Grain size MUST PSA D50 > 75 um	81.3%	A6: 14-16 @ 7 5 m	(coarse-grained)
Grain size MUST PSA D50 > 75 um	71.2%	A7:14-05 @ 7.5 m	(coarse-grained)

OVC = Organic Vapour Concentration (ppmv)

ND = Non-detect (<0.1 ppmv OVC)

--- = No value provided in guidelines

APPENDIX A

1

RECORD OF SITE CONDITION

REPORT AND FORM INFORMATION

Title of report	Phase	II Environmental Site Assessment					
Report date (dd-mon	-уууу)	10-Feb-2015	Record of Site Condition (RSC) ID No. $^{\Psi}$				

2.1 Site na	me	Rossdale Lands						
2.2 Addres	e of cito	9469 Rossdale F	Road NW &	10155 - 96 th .	Avenue NW	7		
Z.Z Muules	S OI SILE	Municipality	Edmon	ton				Alberta
2.3 Legal I	and descri	ption of site (if mu	ıltiple, list all	.)		-	_	
	Plan, Block,	Lot (PBL)		A	Iberta Tow	nship System	(ATS)	
Plan	Block	Lot	LSD	Quarter	Section	Township	Range	Meridian
NB	ОТ							
_								-
							÷	
						-	1	-
				- A-				
			_		-	1	4- 	-

3 STAKEH	OLDERS		
3.1 Operator			
Company	The City of Edmonton	Contact person	Tami Dolen
	Engineering Services, Transportation	Position held	Environmental Scientist
N. 411	Services	Business phone No.	780-496-6782
Mailing address	11004 - 190 th Street NW	Business fax No.	780-944-7653
	Edmonton, Alberta T5S 0G9	Business e-mail	tami.dolen@edmonton.ca
3.2 Consultant	Not applicable		
Company	Nichols Environmental (Canada) Ltd.	Contact person	Tawnya Anderson
		Position held	Senior Project Manager
	17331 - 107th Avenue NW	Business phone No.	780-484-3377
Mailing address	Edmonton, Alberta T5S 1E5	Business fax No.	780-484-5093
		Business e-mail	
3.3 Landowner	r(s)		
Land type	☑ Private ☐ Special Areas (if not private, provide Disposition N	Parks and prote	cted area 🛛 🗌 Public
Landowner(s)	Same as operator		

 ${}^{\psi}\!\!\!\!\!\!\!$: Do not fill in. Reserved for internal administrative purposes only.

3.4 Occupant(s)	446	N/N		Ne				
Are there occupants a	at the site?	⊠ Yes		No	To be dete	301		
Occupant(s)		Same as op						
What is the type of oc	cupancy?	Apartment b	building		own house		ngle detached house	
		Agricultural			ndustrial		mmercial	
		Other (<i>spec</i> <u>Plant</u>	ify) <u>Tel</u>	us Field	. Community Centr	e. EPC	OR Water & Power	
4 OPERATING	STATUS							
⊠ Operating	Susper	nded 🗌 Abando	ned	De	ecommissioning in	progres	s 🗌 Closed	
Reclaimed (pr	rovide Recla	mation Certificate No	.(s):)		ot applic	able	
5 TYPE OF ACT	IVITY AN	D SITE						
5.1 Petroleum Stor	rage Tank	Site	□ Ye	s				
5.1.1 AENV file No.(s)	1		PT	MAA site	e No.	_		
5.1.2 Types of activity	1					ц.		
Retail gas station	1 20 20 1	ation fuelling station		Bulk f	uel 🗌 Other	(specify	0:	
5.2 Upstream Oil a	112-00-1 19/1	1783 C	☐ Ye	5				
5.2.1 AENV file No.(s)		R		and the second	on No.(s)			
5.2.2 ERCB authoriza			Licens		Permit Order		ther (specify)	
5.2.3 Types of activity	2003		Licence	- ш.				
Wellsite and assoc					Battery	D Pi	peline	
Compressor and p	1		-)·	Dunity	<u> </u>	penne	
	3 5	Environmental Pro		_	Enhancoment A	ot (ED	EA) 🗌 Yes	
			JIECII	n anu	Ennancement A			
5.3.1 AENV approval 5.3.2 Types of approv	and the state of the second		_					
Chemical		hanced recovery in-		Fertiliz	er manufacturing	Ē	Landfill	
manufacturing plant	sit	u oil sands or heavy processing plant		plant	or manalaotaning			
Metal manufacturing plant	Oi	l refinery		Oilsand	ds processing plan	t 🗆	Oil production site	
Pesticide manufacturing plant	A CONTRACT OF A	trochemical anufacturing plant		Pipelin	e		Power plant	
Pulp and paper processing plant		our gas processing			ir manufacturing or sing plant		Waste managemen facility	
Wood treatment plant	Ot Ot	er (specify):						

5.4	Facility Under EP	EAC	ode of F	Practice		ı 🗌	/es			
5.4.	1 AENV registration	No.(s)								
0.0210-04146	2 Type of Code of Pr							P		
	Asphalt paving plant		Compressor and pumping station		3. 3.	Concre	Concrete producing plant			Landfill
	Pesticides		Pipeline	9			reatment on hing hydro			Sand and gravel pit
	Small incinerator		Sweet g	gas sing plant		Other	(specify): _			
5.5	Other Activity			X Yes		_				
5.5.	1 AENV file No.(s)	003 003 000	50 &	Other site I	ID No.(s)		Authorized	by	
5.5.	2 Types of activity	1,		*						
	Dry cleaning operation	on	Hi	ghway mainte	enance	e yard		Transporta	ation	
\boxtimes	Other (specify) Multi	-use, E	PCORV	Vater & Powe	r Plant					
	0									
6	SITE CHARACT	ERIZ	ATION						_	
6.1	What Environme	ntal Si	ite <mark>As</mark> se	essments (E	SA) I	lave Be	en Conc	lucted and	Comp	eleted to Date?
X	Phase I ESA					_				
\boxtimes	Phase II ESA (check a	all that	apply.)							
	Initial intrusive sampling	g 🗆	delineatio	on completed		ost-remed	diation moni	toring 🗌 fi	nal conf	irmatory sampling
6.2	Contaminants of	Poter	tial Cor	ncern (COP	C)					
6.2.	1 Does the site have Groundwater Rem		on Guide	lines (2008),	as an	nended?	(check al			
	⊠ Yes	12:02	the second se	No (>procee		the state of the state of the	the second s			
6.2.	and Groundwater								lines.	'see Alberta Tier I Soil
	Contamination within of building foundation		n [Unusual			e	of surf	ace wa	n within 10 m distance ter body
	Fractured bedrock		[Potentia conduct					(see A becify):	berta Tier 1 guidelines
6.2.	1.2 Did the Alberta T corresponding T							eline that wa	as lowe	er than the
	Ves		ד 🖂	BD	1.1.		o (→proce	ed to Section	n 6.2.2)
6.2.	1.3 If you answered a mandatory Tier Alberta Tier 1 guid	2 guid	deline th	at is lower th	nan th	e corres				for each COPC with neck all that apply, see
	General and inorgan	nic para	ameters				Metals			
	Hydrocarbons						Halogen	ated aliphati	cs	
	Chlorinated aromatic									

\square	Other organics			Radionuclides					
	Salt			Other (specify):					
6.2. ⁻	6.2.1.4 Did any past or current ESA relevant to this investigation identify an exceedance of the mandatory Tier 2 guidelines referred to in Section 6.2.1.3 (e.g. Tier 2 guidelines that are lower than the corresponding Tier 1 guidelines)?								
6.2. ⁻	1.5 If you answered 'yes' in Sectio Tier 2 guidelines?	n 6.2.1.4, have all rele	evant	COPC been remediated to meet the mandatory					
6.2.2	6.2.2. Did any past or current ESA relevant to this investigation identify a drilling waste disposal area?								
	Yes	\boxtimes No (\Rightarrow proceed to	Secti	on 6.2.3.)					
6.2.2		d in Assessing Drillin	ng Wa	ast or current ESA identify non-compliance with aste Disposal Areas: Compliance Options for					
	Yes	🗌 No							
6.2.2	outlined in <i>Assessing Drilling</i> (AENV, 2007), as amended?	Waste Disposal Areas		een remediated to meet the compliance options npliance Options for Reclamation Certification					
		🗌 No							
6.2.				in Assessing Drilling Waste Disposal Areas, see the Alberta Tier 1 guidelines, Tables 1-4 for					
	General and inorganic parameters			Metals					
	Hydrocarbons			Halogenated aliphatics					
	Chlorinated aromatics			Pesticides					
	Other organics			Radionuclides					
	Salt			Other (specify):					
6.2.3	3 For all areas and COPCs not ass investigation identify an exceeda			1 or 6.2.2, did any ESA relevant to this 1 guidelines?					
	⊠ Yes	□ No (→proceed	to Se	ection 6.3.)					
6.2.3	3.1 If you answered 'yes' in Sectio guidelines?	n 6.2.3, have all COP	C bee	n remediated to meet the Alberta Tier 1					
	☐ Yes	🖾 No							
6.2.3	3.2 For any COPC that exceeded A contaminants. (check all that ap	Iberta Tier 1 guidelin ply, see the Alberta Tie	es in er 1 gu	Section 6.2.3.1, identify the group of uidelines, Tables 1-4 for detailed listing.)					
\square	General and inorganic parameters		\square	Metals					
\square	Hydrocarbons			Halogenated aliphatics					
	Chlorinated aromatics			Pesticides					
\square	Other organics			Radionuclides					
	Salt			Other (specify):					

6.3 Status of Investigation							
6.3.1 Identify soil and groundwater guidelines used to (check all that apply).	assess the COPCs that are the subject of this investigation						
Alberta Tier 1 Soil and Groundwater Remediat	Alberta Tier 1 Soil and Groundwater Remediation Guidelines – 2008, as amended						
Alberta Tier 2 Soil and Groundwater Remediate Pathway exclusion Guide	 Alberta Tier 2 Soil and Groundwater Remediation Guidelines – 2008, as amended Pathway exclusion Guideline adjustment Site specific remediation objectives Assessing Drilling Waste Disposal Areas: Compliance Options for Reclamation Certification 						
Other (<i>specify</i>):							
6.3.2 What land use classification(s) is used?							
🗌 Natural 🔲 Agricultural 🛛 Residential 🖂	Commercial Industrial Other (specify:)						
For all COPCs on-site and off-site, no exceedance guidelines in any prior and current assessments.	 5.3.3 What is the outcome of the investigation? (check one only.) For all COPCs on-site and off-site, no exceedance has been found above any applicable soil and groundwater guidelines in any prior and current assessments. All contamination on-site and off-site has been completely remediated and meets the applicable soil and groundwater guidelines. 						
6.3.4 How many contaminated areas are there current	ly at the site?						
None	🖾 TBD						
6.3.5 Are all contaminated areas and potential contam	inated areas assessed during this investigation?						
6.3.6 For all areas of potential environmental concern (specify dd-mon-yyyy): <u>1989, 1992, 2000;</u>	, list the dates when the contamination was discovered						
6.3.7 For all areas that have been identified in Section	6.3.4, have all substance releases been reported to AENV?						
Yes No	Not applicable						
6.3.8 If the answer to Section 6.3.7 is 'yes', list all Incie							
6.3.9 What is the approximate, cumulative amount of I guidelines? (m ²)	and area remaining exceeding applicable remediation						
6.3.10 Is there non-aqueous phase liquid (NAPL) prod	uct remaining on site? 🗌 Yes 🖾 No 🗌 TBD						
6.3.11 Is there non-aqueous phase liquid (NAPL) prod	uct remaining off site?						
6.3.12 What is the remediation status of the contamination	ated areas at site?						
No remediation required	Site has exceedance but no remediation plan						
Remediation plan developed	Active remediation						
Remediation completed	Post remediation assessment completed						
Ongoing risk management plan – on-site	Ongoing risk management plan – off-site						
Remediation Certificate issued for some area(s) (pro							
Remediation Certificate cancelled for some area(s) (provide Remediation Certificate No.(s):)							

Direction for Completing the Remainder of the Form

Attach the analytical summary tables of the COPCs that are the subject of this investigation and still present at this site. A detailed listing of COPCs can be found with Tables 1-4 in *Alberta Tier 1 Soil and Groundwater Remediation Guidelines* (AENV, 2008), as amended. Refer to the *RSC User's Guide* for detailed information on format and other requirements regarding the summary table.

For the remainder of the form, follow the directions below:

- If the COPCs on-site and off-site have never exceeded any applicable soil and groundwater guidelines in any prior and current assessments, → proceed to Section 8, or
- If the COPCs on-site and off-site have been completely remediated and meet the applicable soil and groundwater guidelines, →proceed to Section 8, or
- For all other circumstances, continue with Section 6.4.

6.4	Key Transpo	rt ⊢actors for	Existing CO	PCS					
6.4.1	What is the ho	orizontal distan	nce to the near	est water v	well from t	he edge of the	e nearest con	taminated area?	
	🛛 0-50 m	□ 50-	100 m	100-300) m	🗌 300-1000 r	n □>	1000 m	
6.4.2	What is the ho	orizontal distan	nce to the near	est surface	e water bo	dy from the e	dge of the co	ntaminated area?	
	⊠ ≤10 m	🗌 10-50 m			100-30		300-1000 m	🗌 > 1000 m	
6.4.3	Does delineat	ion achieve clo	osure above th	e groundw	ater water	r table that is	nearest to the	e ground surface?	
	<u> </u>	go to Section	,	🛛 No			🗌 TBD		
6.4.4	Is the ground Tier 2 guid		earest the grou	and surface	e a domes	tic use aquife	r (DUA) as de	fined in Alberta	
			🗌 No		🖂 ТВ	D	🗌 Not requ	uired (NR)	
6.4.5	Is there a hydr area and the D		as defined in A	Iberta Tier	[.] 2 guidelir	nes, between t	the base of th	e contaminated	
	🗌 Yes		🗌 No		🛛 ТВ	D	🗌 NR		
6.4.6	6.4.6 If you answered 'yes' to Section 6.4.5, provide the measured largest value of the hydraulic conductivity (as value ×10 ⁷ m/sec.) for the 5.0 m vertical layer from the bottom of the contaminated zone.								
		sec.) for the 5.	0 m vertical la	yer from th	e bottom	of the contam	inated zone.		
		sec.) for the 5. () ⁻⁷ m/sec.)	0 m vertical la TBD	yer from th	e bottom		inated zone.		
				yer from th			inated zone.		
6.5) ⁻⁷ m/sec.)		yer from th			inated zone.		
	(×10) ⁻⁷ m/sec.)	TBD			8			
6.5.1	(×10) ⁻⁷ m/sec.) acterization ninant soil text	TBD		nce transp	cort at the site	?	Section 6.2.1.1.)	
6.5.1 X	On-site Chara What is the dor) ⁻⁷ m/sec.) acterization ninant soil text □ Fine g	TBD	rns substa TBD [NF	cort at the site	? entify reason in a	,	
6.5.1 ⊠	On-site Chara What is the dor Coarse grained What are the s table at site?) ⁻⁷ m/sec.) acterization ninant soil text □ Fine g	TBD ture that gove rained	rns substa TBD [nce transp Not appl s (meters	cort at the site	entify reason in a	the water	
6.5.1 区 6.5.2	On-site Chara What is the dor Coarse grained What are the s table at site?	^{2⁻⁷ m/sec.) acterization minant soil text ☐ Fine g hallowest and allowest and}	TBD ture that gove rained deepest meas	rns substa TBD [sured depth	nce transp Not appl ns (meters	cort at the site icable (<i>must ide</i> below ground specify max. de	entify reason in a d surface) of t epth assessed	the water /:(m))	
6.5.1 区 6.5.2	(×10 On-site Chara What is the dor Coarse grained What are the s table at site? Shallowest: <u>7.3</u>	^{2⁷ m/sec.) acterization minant soil text ☐ Fine g hallowest and <u>1</u> (m) Deepest minant horizor}	TBD ture that gove rained deepest meas	rns substa TBD [sured depth	nce transp Not appl ns (meters	cort at the site icable (<i>must ide</i> below ground specify max. de	entify reason in a d surface) of t epth assessed	the water /:(m))	
6.5.1 () 6.5.2 6.5.3	(×10 On-site Chara What is the dor Coarse grained What are the s table at site? Shallowest: <u>7.3</u> What is the do	^{2⁻⁷ m/sec.) acterization minant soil text ☐ Fine g hallowest and <u>at</u> (m) Deepest minant horizor <u>SE</u>)}	TBD ture that gove rained deepest meas t: <u>10.55(m)</u> ntal direction of	rns substa TBD [sured depth TBD of groundw TBD	nce transp Not appl ns (meters	cort at the site icable (<i>must ide</i> below ground specify max. de for the near su	entify reason in a d surface) of t epth assessed	the water /:(m))	
6.5.1 () 6.5.2 6.5.3	(x10 On-site Chara What is the dor Coarse grained What are the s table at site? Shallowest: <u>7.3</u> What is the do (<i>N, NW, etc.:</i> <u>5</u>	^{2⁻⁷ m/sec.) acterization minant soil text ☐ Fine g hallowest and <u>at</u> (m) Deepest minant horizor <u>SE</u>)}	TBD ture that gove rained deepest meas t: <u>10.55(m)</u> ntal direction of	rns substa TBD [sured depth TBD of groundw TBD ?	nce transp Not appl ns (meters	cort at the site icable (<i>must ide</i> below ground specify max. de for the near su	entify reason in a d surface) of t epth assessed urface water t	the water /:(m))	
6.5.1 (6.5.2 6.5.3 6.5.4	(×10 On-site Chara What is the dor Coarse grained What are the s table at site? Shallowest: <u>7.3</u> What is the do (<i>N</i> , <i>NW</i> , etc.: <u>5</u> What is the exi	^{2⁻⁷ m/sec.) acterization minant soil text □ Fine g hallowest and additional minant horizor SE) isting land use Agricultural}	TBD ture that gove rained deepest meas t: 10.55(m) ntal direction of classification	rns substa TBD [sured depth TBD of groundw TBD ?	nce transp Not appl s (meters NR (a vater flow f	cort at the site icable (<i>must ide</i> below ground specify max. de for the near su	entify reason in a d surface) of t epth assessed urface water t	the water <u>(m)</u>) able?	

6.5.6 Identify exposure pathways for which the applicable	guidelines are exceeded on-site (check all that apply).
Vapour inhalation	Soil ingestion
Ingestion of potable water	Soil dermal (skin) contact
Fresh water aquatic life	Soil contact for plants and invertebrates
TBD	Other (specify):
6.6 Off-site Characterization	
6.6.1 Are there COPCs off-site exceeding applicable soil o	r groundwater guidelines?
\Box No ($ ightarrow$ if on-site contamination was reported, proceed	to Section 7, otherwise, proceed to Section 8.)
🗌 Yes 🛛 🖾 TBD	
6.6.2 What is the current land use classification for any of	f-site area(s) identified in Section 6.6.1?
🗌 Natural 🗌 Agricultural 🛛 Residential 🖾 Cor	nmercial 🗌 Industrial 🗌 Other (<i>specify</i>)
6.6.3 What is the end land use classification for any off-sit	te area(s) identified in Section 6.6.1?
🔄 🗌 Natural 🗌 Agricultural 🛛 Residential 🖾 Cor	nmercial 🗌 Industrial 🗌 Other (<i>specify</i>)
6.6.4 Is there any substance concentration under a road a guidelines?	llowance exceeding the applicable soil or groundwater
□ Yes □ No (→ proceed to Sec	ction 6.6.6.) 🛛 TBD
6.6.5 What is the most sensitive land use classification ad	jacent to the road allowance?
🗌 Natural 🗌 Agricultural 🛛 Residential 🖾 Co	mmercial Industrial Other (<i>specify</i>)
6.6.6 Identify exposure pathways for which the applicable	guidelines are exceeded off-site (check all that apply).
Vapour inhalation	Soil ingestion
Ingestion of potable water	Soil dermal (skin) contact
Fresh water aquatic life	Soil contact for plants and invertebrates
TBD	Other (specify):

7 RISK MANAGEMENT PLAN (RMP)

7.1 Wh	at is the F	Plan for Contaminated Areas Still Remaining on and off the Site? (check one only.)
] Complete	remediation (→proceed to Section 8).
\boxtimes	Partial rer	nediation with risk management for some residual contamination.
SE	Risk mana	agement for all remaining contamination.
7.2 Key	Progress	s of RMP
7.2.1 lf	the site ne	eds an on-going RMP, answer all the following questions that apply to the RMP.
Ves Yes	No No	Are contaminated areas completely delineated horizontally and vertically in soil?
Yes	No No	Are contaminated areas completely delineated horizontally and vertically in groundwater?
🗌 Yes	No No	Is source identified and completely delineated?
Yes	No No	Is source migrating or has migrated off-site?
🗌 Yes	No No	Is source left as is?
Yes	No No	Is source partially removed and residual source being managed?
Yes	No 🛛	Is source controlled with physical or administrative methods?
Yes	No No	Are all pathways of concern identified?
Yes	🛛 No	Have all relevant receptors been identified and protected?
Yes	No No	Is there a monitoring program in place to verify RMP success?
🛛 Yes	🗌 No	Are there third parties related to this RMP? (if the answer is 'no', skip the next question.)
Yes	🗌 No	If there are third parties, have all of them accepted the RMP?
🗌 Yes	🗌 No	Is there a commitment from person(s) responsible to implement and monitor the RMP until final remediation guidelines are achieved?
🗌 Yes	🗌 No	Is there a contingency plan in place should the RMP fail?
Yes	No No	Is the RMP implemented for the site?

Public Disclosure and Privacy Notification

The Record of Site Condition form is a public record that is disclosed in accordance with section 35 of the Environmental Protection and Enhancement Act, Disclosure of Information Regulation, and Ministerial Order 23/2004. Reasonable efforts have been made to minimize collection of personal information where possible. Personal information on the form is collected under the authority of section 12(c) and other provisions of the Environmental Protection and Enhancement Act and is in compliance with section 33(a) and 33(c) of the Freedom of Information and Protection of Privacy Act (FOIP). Personal information collected on this form will be used by Alberta Environment for the purposes of administering its programs.

Accuracy of Information

The information in this document has been submitted by persons other than Alberta Environment. The Department and the Government of Alberta cannot and do not warrant that the information in this document is current, accurate, complete, or free of errors. Persons accessing the information provided should not rely on it, and any reliance on the information provided is taken at the sole risk of the user. Users of this information are advised to conduct their own due diligence to satisfy themselves of the environmental condition of the property of interest.

8 DECLARATION

This *Record of Site Condition* form was prepared for the purpose of reporting on the state of environmental site conditions and, where applicable, for the purpose of remediation or reclamation, for: <u>Rossdale Lands</u> (site name) (the "Site").

I, as the licensed operator or authorized representative, have reviewed all information that was used in preparation of this form and I am satisfied that it was prepared in a manner consistent with the Applicable Standard^{III} together with any relevant additional guidance that is available from Alberta Environment as of this date for conducting environmental site assessments.

Having conducted reasonable inquiries to obtain all relevant information, to my knowledge, the statements made in this form are true as of this date. I have disclosed all pertinent information of which I am aware concerning the historical and current environmental condition of the Site to the Director.

Any use which a third party, other than the Crown in right of Alberta, makes of this form, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. The undersigned accepts no responsibility for damages, if any, suffered by any third party, other than the Crown in right of Alberta, as a result of decisions made or actions based on this form. Any exclusions or disclaimers to the contrary contained in any attachment to this form are of no force or effect as against the Crown in right of Alberta.

Footnote ⊥:

"Applicable Standard" means

- a) for the purposes of upstream oil and gas sites,
 - i) Alberta Environment Phase I Environmental Site Assessment Guideline for Upstream Oil and Gas Sites (AENV 2001),
 - ii) CSA Standard Z769, Phase II Environmental Site Assessment, as amended, for any Phase II site assessment information used in preparation of this form on all upstream oil and gas sites not included in a) i);
- b) for the purposes of all other sites, CSA Standard Z768, Phase I Environmental Site Assessment, as amended, for any Phase I site assessment information and with CSA Standard Z769, Phase II Environmental Site Assessment, as amended, for any Phase II site assessment information used in preparation of this form.

By signing below, I as the licensed operator or authorized representative, confirm the information provided herein is correct and complete, to the best of my knowledge and belief.

	Tawnya Anderson, B.Sc., EP	Senior Project Manager, Nichols Environmental (Canada) Ltd.	10-Feb-2015
Name of operator	Name of authorized representative	Title of authorized representative (<i>e.g. officer, director</i>)	Date (<i>dd-mon-yyyy</i>)

APPENDIX B

The City of Edmonton Phase II Environmental Site Assessment Rossdale Lands: 9469 Rossdale Road NW & 10155 – 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 1 of 5

Photograph 1: Advancement of A3: 14-08 within Area 3, looking west.

Photograph 2: Advancement of A3: 14-10 within Area 3, looking southwest.

The City of Edmonton Phase II Environmental Site Assessment Rossdale Lands: 9469 Rossdale Road NW & 10155 – 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 2 of 5

Photograph 3: Advancement of A3: 14-12 within Area 3, looking southeast.

Photograph 4: Advancement of A5: 14-01 within Area 5 (background location), looking north.

The City of Edmonton Phase II Environmental Site Assessment Rossdale Lands: 9469 Rossdale Road NW & 10155 – 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 3 of 5

Photograph 5: Advancement of A5: 14-04 within Area 5, looking southeast.

Photograph 6: Advancement of A6: 14-14 within Area 6, looking west toward Pump House #2.
The City of Edmonton Phase II Environmental Site Assessment Rossdale Lands: 9469 Rossdale Road NW & 10155 – 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 4 of 5

Photograph 7: Advancement of A6: 14-17 within Area 6, looking east toward Pump House #1.

Photograph 8: Concrete coring for access to boreholes to the east of the Watermark Building within Area 7, looking southwest.

The City of Edmonton Phase II Environmental Site Assessment Rossdale Lands: 9469 Rossdale Road NW & 10155 – 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD February 10, 2015 Page 5 of 5

Photograph 9: Advancement of A7: 14-05 within Area 7, looking south.

Photograph 10: Advancement of A7: 14-06 within Area 7, looking northwest.

APPENDIX C

LIST OF REVIEWED REPORTS

- Alberta Environment and Sustainable Resource Development. 1992. Fire Service Centre, Summary Report 1991;
- Alberta Environment and Sustainable Resource Development. 1994. ERD Service Centre Vapour Extraction System;
- Alberta Environment and Sustainable Resource Development. 1998. Re: Mercury Contamination Release Report, NUL Rossdale Power Plant Regulating Station, 95 Avenue and 105 Street, Edmonton:
- Alberta Environment and Sustainable Resource Development. 2004. Rossdale Water Treatment Plant 3 Decommissioning, 101 Street and 95 Avenue, Edmonton;
- Alberta Environment and Sustainable Resource Development. 2004. Re: Phase I ESA and Surface Soil Testing, Proposed Rossdale Traditional Burial Ground, 105 Street and Rossdale Road, Edmonton;
- Alberta Environment and Sustainable Resource Development. 2006. Re: Soil and Groundwater Investigation for Creosote Impact, 9469 Rossdale Road Water Treatment Facility, Edmonton;
- CT & Associates Engineering Inc. June 2004. *Phase I Environmental Site Assessment, Property to Southeast of 105 Street and Rossdale Road, Edmonton, Alberta;*
- EBA Engineering Consultants Ltd. 1989. Contaminated Soil, Fire Service Centre, 94 Avenue, 101 Street - Edmonton, Alberta;
- EBA Engineering Consultants Ltd. 1989. Fire Station #21, Fire Department Service Centre, Underground Tank Removal, Soil Inspection;
- EBA Engineering Consultants Ltd. 1991. *Vapour Extraction System, Fire Service Centre, 94 Avenue and 101 Street, Edmonton;*
- EBA Engineering Consultants Ltd. 1992. Vapour Extraction System, Fire Service Centre, Summary Report 1991;
- EBA Engineering Consultants Ltd. 1993. *Fire Service Centre Vapour Extraction System*;
- EBA Engineering Consultants Ltd. 1994. *Soil and Groundwater Sampling Program, Fire Department Service Centre, 94 Avenue and 101 Street;*
- EBA Engineering Consultants Ltd. 1995. *Monitoring Program, Vapour Extraction System, Fire Department Service Centre, 94 Avenue & 101 Street, Edmonton, Alberta.*

- EBA Engineering Consultants Ltd. 2001. *Phase II Environmental Site Assessment, Fire Hall* – Rossdale Emergency Response Site, 94 Avenue/101 Street, Edmonton, Alberta;
- EBA Engineering Consultants Ltd. 2002. *Phase 3 Environmental Site Assessment, Rossdale Emergency Response Site, 94 Avenue/101 Street, Edmonton, Alberta;*
- EBA Engineering Consultants Ltd. 2002. Preliminary Groundwater Monitoring Data, April 17 to July 10, 2002, Rossdale Emergency Response Department (ERD) Site, 94 Avenue and 101 Street, Edmonton, Alberta;
- EBA Engineering Consultants Ltd. 2003. Spring 2003 Groundwater Monitoring Data, Rossdale Emergency Response Department (ERD) Site, 94 Avenue and 101 Street, Edmonton, Alberta;
- EBA Engineering Consultants Ltd. 2004. *Soil and Groundwater Investigation for Creosote Impact, Rossdale Water Treatment Facility, 9469 Rossdale Road, Edmonton, Alberta;*
- EBA Engineering Consultants Ltd. 2005. *Groundwater Monitoring Summary June 2005, Rossdale Emergency Response Department (ERD) Site, 94 Avenue and 101 Street, Edmonton, Alberta;*
- EBA Engineering Consultants Ltd. 2007. Groundwater Sampling and Analysis Wells C1, C6 and C7 (June 2007), 9469 Rossdale Road, Edmonton, Alberta;
- EBA Engineering Consultants Ltd. 2007. Groundwater Re-Sampling Well C1 (January 2007), 9469 Rossdale Road, Edmonton, Alberta;
- EBA Engineering Consultants Ltd. 2008. Groundwater Sampling and Analysis July 2008. EPCOR Control Building Compound, 9469 Rossdale Road, Edmonton, Alberta;
- Komex International Ltd. 1998. *Final Report, Summary and Results, 1998 Mercury Investigation at Rossdale Power Plant, Edmonton. Alberta;*
- Stantec Consulting Ltd. 2010. *Geotechnical Site Investigation, Rossdale Water Treatment Plant Dechlorination Project, 9469 Rossdale Road, Edmonton, Alberta;*
- Stantec Consulting Ltd. 2011. Limited Environmental Site Assessment, Proposed WTP Sodium Hypochlorite Building, Rossdale Water Treatment Plant, Edmonton, AB;
- Thurber Environmental Consultants Ltd. 1992. *Preliminary Environmental Investigation Re:* Bottom Ash and Groundwater at the Rossdale Treatment Plant, Edmonton, Alberta
- Thurber Environmental Consultants Ltd. 1997. *Soil Monitoring at Rossdale Power Generating Station, Edmonton, Alberta;*

The City of Edmonton Phase II Environmental Site Assessment Rossdale Lands: 9469 Rossdale Road NW & 10155 - 96th Avenue NW Edmonton, Alberta Project No. 14-214-CRD January 23, 2015 Page 3 of 3

- Thurber Environmental Consultants Ltd. 1999. *Phase III Environmental Site Assessment, EPCOR, Rossdale Generating Station, Edmonton, Alberta*;
- Thurber Environmental Consultants Ltd. 2001. *Monitoring Wells Installation, Rossdale Power Plant, Edmonton, Alberta*;
- Thurber Environmental Consultants Ltd. 2002. *Groundwater Monitoring at EPCOR Rossdale Generating Station, Edmonton, Alberta;*
- Thurber Environmental Consultants Ltd. 2004. 2003 Groundwater Monitoring at EPCOR Rossdale Generating Station, Edmonton, Alberta;
- Thurber Engineering Ltd. 2009. *Historical Data Review and Phase I Environmental Site Assessment, Rossdale Generating Station, 9469 Rossdale Road and 10155 96 Avenue, Edmonton, Alberta;*
- Thurber Engineering Ltd. 2010. *Phase II Environmental Site Assessment, Rossdale Generating Station, 9469 Rossdale Road and 10155 96 Avenue, Edmonton, Alberta;*
- Thurber Engineering Ltd. 2012. *Soil Investigation, Proposed Sodium Hypochlorite Building,* 10155 96 Avenue, Edmonton, Alberta;
- Thurber Engineering Ltd. 2013. Environmental Impact Assessment & Site Location Study, Proposed EPCOR Water Quality Assurance Laboratory and Office Building, Rossdale Water Treatment Plan, 9469 Rossdale Road, Edmonton, Alberta; and
- Thurber Engineering Ltd. 2013. *Phase III Environmental Site Assessment, Proposed EPCOR Water Quality Assurance Laboratory and Office Building, 9469 Rossdale Road NW, Edmonton, Alberta.*

APPENDIX D

CLIEN	IT: T	he City of Edmonton	F	FIELD PE	RS	SONI	NEL:	H. E	BAKKI	ER				BORE	HOLE NO	D: A1:14-	18
PROJ	ECT:	Phase II ESA		DRILLING	GΝ	IETH	IOD:	So	lid St	em	Auge	er		PRO.	ECT NO:	14-214-0	CRD
LOCA	TION	I: 9469 Rossdale Rd & 10155-96	Ave NW, Edm	CO-ORD	INA	TES	:							ELEV	ATION: 6		
SAMP	LE T	YPE SPT	NO RECOV	'ERY	\boxtimes	GRA	В		_		CASIN	G		SPLIT	SPOON	CORE	
BACK	FILL	TYPE BENTONITE	PEA GRAV	EL		SLO	JGH			G	Rout				CUTTINGS	SAND	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPT	ION		SAMPLE TYPE			V		UR	8 ON 10 ⁴	L	WELL INSTALLATION	WELL	COMF	PLETION A	ELEVATION (m)
- 0.0		SAND AND GRAVEL FILL: loos	e, brown, pebl	oles,		:::	10	10	00 : : : :	10	10	: : : : : : : : : : : : : : : : : : : :		- Flush			-
- - - - 1.0		dry	·			~								- 0.9 p - 0.9 p	pm		-624.0
Ē		SILT: some clay, some sand, so	it, brown, dry	ĺ										- 0. 7 p	pin		Ē
		- increasing clay, increasing firm at 1.6 m	ness, white de	posits	\bowtie	•<<								- 0.5 p - 0.3 p			
-																	E
-3.0					\times	•<<								- 0.1 p - 0.3 p			-622.0
E		- moist from 3.2 m to 3.7 m															Ē
4.0					X	׫ 								- 0.4 p			621.0
Ē	•••••	SAND												- 0.8 p	рп		E
		SILT: wet SAND: loose, salt and pepper, d	amp		×	•<<								- 0.6 p			-620.0
5.0 =	•••••	•		ľ	\ge	×								- 0.4 p	pm		-
		o o o			×	•<<								- 0.6 p			
6.0		a a a a			\times									- 1.2 p			
7.0				-	×	•<<								- 0.4 p - 0.7 p			618.0
F		•															È
8.0		- coal at 7.5 m			\times									- 1 ppr			-617.0
		- organics at 8.0 m - wet at 8.2 m				~		-						- 0.4 p - 0.1 p			
9.0		- gravel at 9.1 m			×								• <u> </u>		mm 0.254 creen	Slotted	616.0
		•			\ge	·								- 0.5 p			_
-10.0		9 9 9 9				~								- 0.4 p			615.0
	<u> </u>	Monitoring well installed Groundwater level at 8.68 m on END OF BOREHOLE AT 10.5 r		2014							->>>		<u> </u>	- PID #	49		-614.0
- 12																	-613 0
	-				\ •	r 4	•		GGED							N DEPTH: 10	
Ni	ch	ols Environment	al (Car	nada)	Lt	d.	RE	VIEWE	D BY	': T.A.			C	OMPLETED		0 1
il								1						1		Pag	e 1 of 1

CLIEN	IT: T	he City o	f Edmonton		FIELD PERSO	DNN	EL: H	. BAKk	(ER			BOREHOLE	NO: A1:14-7	19
PROJ	ECT:	Phase I	IESA		DRILLING ME	THC	DD: S	olid S	Stem A	uger		PROJECT NO): 14-214-C	RD
LOCA	TION	I: 9469 F	Rossdale Rd & 10155-9	6 Ave NW, Edm								ELEVATION:	624.946 m	
SAMF	PLE T	YPE	SPT	NO RECO					A-CA			SPLIT SPOON	CORE	
BACK	FILL	TYPE	BENTONITE	· PEA GRAV	'EL 🛄S	LOU	GH		GRC	UT	E	DRILL CUTTING	S 🔝 SAND	,
DEPTH (m)	SOIL SYMBOL		SO DESCRI			SAMPLE TYPE		١		JR ◆	N 10⁴	COMM	ENTS	ELEVATION (m)
_ 0.0		SAND	AND GRAVEL FILL: IO	ose, brown, peb	bles, dry		: : : : : :	<u>10 ^</u>	100 ^					F
1.0 2.0 3.0 4.0 5.0 6.0 1.1.0 1.0 1.0 1.0 1.0 1.0 1.0		- increa deposit Backfill	oft, loose, brown, damp ising clay, increasing fir s at 1.6 m ed with cuttings to grad F BOREHOLE AT 3 m	mness, light bro	wn, white							- 0.4 ppm - 0.1 ppm - 0.3 ppm - 0.6 ppm - 0.4 ppm - 0.1 ppm - PID #9		-624.0 -623.0 -622.0 -621.0 -619.0 -619.0 -618.0
														616.0
														-615.0
					• • •		L		BY: H.				ON DEPTH: 3 r	n
Ni	ch	ols E	Invironmen	ital (Car	nada) L	to	l. [REVIEW	ED BY:	T.A.		COMPLET	ED: 11/19/14	1 1 1
													Page	e 1 of 1

CLIEN	NT: T	he City c	f Edmonton		FIELD PERS	ONN	EL: F	H. B	AKKE	R				BOREHOLE NO	: A1:14-2	20
PROJ	IECT:	Phase l	IESA		DRILLING M	ETH	DD: S	Soli	d St	em A	uger			PROJECT NO:	14-214-C	RD
LOCA	TION	I: 9469 F	Rossdale Rd & 10155-96	Ave NW, Edm	CO-ORDINA	TES:								ELEVATION: 62		
SAMF	PLE T	YPE	SPT	NO RECOV		GRAB				A-CA				SPLIT SPOON	CORE	
BACK	FILL	TYPE	BENTONITE	• PEA GRAV	'EL 🎹	SLOU	GH		i	GRO	UT			DRILL CUTTINGS	SAND	
DEPTH (m)	SOIL SYMBOL		SOI DESCRII			SAMPLE TYPE		H` 10	V	APOL ● PPM ●	•	N 10⁴		COMME	NTS	ELEVATION (m)
_ 0.0		SAND	AND GRAVEL FILL: loo	se, brown, peb	bles, dry											E-625.0
- - - - - - - -		SILT: s	ome sand, some clay, so	oft, loose, brow	n, damp	×	×							0.1 ppm 0.1 ppm		624.0
			asing clay, increasing firn	nness, light bro	wn, white	X	• • • • • • • •						-	Non-Detect		
2.0			ts at 1.6 m fragments at 1.8 m			X								Non-Detect		-623.0
-3.0		Backfill	ed with cuttings to grade	9		X	⊷						-	Non-Detect 0.5 ppm PID #9		-622.0
4.0																621.0
- 																620.0
																619.0
7.0													***			618.0
																617.0
9.0													****			E616.0
2 - 10.0													***			615.0
							••••									-614.0
- 12							::::									<u> </u>
Ni	ch	ule k	Environmen	tal (Car	l (eher	[.tc	∎ ⊦			3Y: H.E D BY: ⁻				COMPLETION COMPLETED:		<u>11</u>
		015 1		un (Val	iaua) I		*•		vvL							e 1 of 1

		ne City of Ed			PERSC								E NO: A3:1		
		Phase II ES		DRILL 5 Ave NW, EdmCO-O	ING ME		D: S	olid St	em A	uger			NO: 14-21 N: 622.668 r		
SAMP			SPT					F	A-CA	SING					
BACKI			BENTONITE		 s		н	_	GRO						
Driok			DENTONIE		<u>_</u>			Ŀ							
DEPTH (m)	SOIL SYMBOL		SO DESCRI			SAMPLE TYPE	1		APOL ◆ PPM •	JR	N 10⁴	COM	MENTS	FI FVATION (m)	
0.0	. • . •	ASPHALT												-	
		SAND ANE) GRAVEL FILL: so	me clay, loose, brown	I	\bowtie	•					- 4.5 ppm		E-622	
1.0		-				\times	•					- 1.8 ppm		-	
		SILT: some	e clay, some sand, lo	oose, brown, damp								- 3.7 ppm			
														E-62'	
-2.0						X						- 5.2 ppm		-	
-						\ge	۲				vw:	- 4.7 ppm		-620	
-3.0							•					- 3.5 ppm		E E	
-4.0						×.						- 3.6 ppm		E-619	
- 1.0	- 3.6 ppm														
5.0		Backfilled v	vith cuttings to grade)								- PID #9		Ē	
		END OF B	OREHOLE AT 4.9 r	n										-61	
-6.0															
-												**		-	
														-610	
7.0											×KI> <<<				
												**		E 61!	
8.0														Ē	
														-	
														-614 E	
7.0												**		Ē	
												4		-613	
-10.0							••••••							Ē	
-														-612	
-9.0 -10.0 -11.0 -12.0 -13.0														E017	
														E E	
												***		-61	
-12.0										•••		**			
														-610	
-13.0														Ē	
											· · · · · · · · · · · · · · · · · · ·			F	
14 Ni														E-604	
NT.	ala			4al (Carra 1	<u>م) ד</u>	4.1		DGGED					ETION DEPTH		
INI	cno	DIS En	vironmen	tal (Canad	a) L	٥td		EVIEWE	D BY:	I.A.		COMPL	ETED: 10/30/1	14 Page 1 o	
							1							raye I O	

CLIEN	IT: T	he City of E	dmonton		FIELD PERS	JNN	IEL:	H. E	BAKK	ER			E	BOREHOLE NO	: A3:14-1	0
PROJ	ECT:	Phase II E	SA		DRILLING ME	ETH	OD:	Sol	id S	tem /	Auge	r	F	PROJECT NO:	14-214-C	RD
LOCA	TION	: 9469 Ros	sdale Rd & 10155-96	Ave NW, Edr	nco-ordina ⁻	res:							E	ELEVATION: 62	2.494 m	
SAMP	PLE T	YPE	SPT	NO RECC							CASING		<u> </u>	SPLIT SPOON	CORE	
BACK	FILL	TYPE	BENTONITE	PEA GRA	VEL 🛄 S	SLOU	GH			GR	OUT			DRILL CUTTINGS	SAND	
DEPTH (m)	SOIL SYMBOL		SOII DESCRIF			SAMPLE TYPE		H 10	V	ROC/ APC ◆ PPM 00		ON 10⁴		COMME	NTS	ELEVATION (m)
- 0.0		grey, dam	ID GRAVEL FILL: som	ie clay, loose	, brown to									17.8 ppm		622.0
E			L: loose, grey, moist : some clay, some san	d. soft. loose	. brown. moist	X								16.1 ppm		Ē
		-∖- becomin	g grey at 1.2 m		/								-	17.8 ppm		E-621.0
<u>-</u> 2.0		CLAY FIL	L: 2% coarse fragmen firm, low plasticity, gre	t content, sor	ne sand,	М							-	19.1 ppm		Ē
		SULLC SIL	IIIII, IOW piasuony, yro	y, uamp		X		۲						8.7 ppm		620.0
-3.0		SILT: som	ne clay, some sand, loc	<u>se brown d</u>	amn								-	16.8 ppm		Ē
4.0		ULT SS.		,50, 6 , 6, 6,	unp	М		•	•				-	18.8 ppm		-619.0
5.0						X							-	16.6 ppm		618.0
						M							-	17.6 ppm		617.0
6.0		SAND AN inclusions	ID GRAVEL: loose, bro	own to black,	coal	X		5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	•				-	20.6 ppm		-616.0
-7.0			m at 6.5 m			X		•					- 1	6.5 ppm		
-8.0		wat at 0	0 m			X		•					-	8.1 ppm		615.0
		- wet at 8.	UIII			M							-	18.6 ppm		
9.0		Backfilled END OF	with cuttings to grade BOREHOLE AT 9.1 m	I		-		5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					-	PID #9		-613.0
																612.0
																-611.0
																610.0
													· · · · · · · · · · · · · · · · · · ·			609.0
	<u> </u>	1 -	• .		• • •	· .				BY: F			T	COMPLETION		m
	ch	ols Er	vironment	al (Ca	nada) I	_t(1.	RE\	/IEWE	D BY:	T.A.			COMPLETED:		e 1 of 1
āl														1	Page	; I 0I I

		ne City of Edi		FII	ELD PERSC	ONNE	EL: H	BAKKEF	R		BO	REHOLE NO	: A3:14-	11
		Phase II ES			RILLING ME		D: S	olid Ste	m Auge	er		OJECT NO:		CRD
			dale Rd & 10155-96									EVATION: 62		
SAMF BACK			SPT BENTONITE	NO RECOVER			<u></u>		A-CASING GROUT			LIT SPOON	CORE	
DACK		ITPE	DEINTOINITE		. <u> </u>			<u>••</u>	GROUT			ILL CUTTINGS	Jan SAND	
DEPTH (m)	SOIL SYMBOL		SOI DESCRI			SAMPLE TYPE	1		POUR	ON 10⁴		COMME	NTS	ELEVATION (m)
= 0.0 =														Ē
-1.0		CLAY FILL: bits, firm, lo	GRAVEL FILL: loo some sand, some w plasticity, oxidatio	pebbles, concrete	bits, brick	M.	·> · · · · · · · · · · · · · · · · · ·	•				.6 ppm .5 ppm		-622.0
-		inclusions, o	•	al inclusione dans		×	::::::	•::::::			- 13	.2 ppm		E-621.0
-2.0		SILT: some	clay, soft, loose, co	Dai inclusions, drov	wn, damp	Μ.		•			- 18	.7 ppm		Ē
-											-			E-620.0
-3.0														Ē
3.0						X					- 11	.6 ppm		Ē
-4.0						×.	•••••••	•			- 20	.7 ppm		-619.0
5.0						ж. М		•			- 25	.5 ppm		618.0
6.0						⊠.	•••••••	•			- 19	.2 ppm		-617.0
0.0								•			- 25	ppm		Ē
-7.0		SAND AND inclusions, c	GRAVEL: loose, b lamp	lack to brown, coa	al	×.		•			- 16	.5 ppm		616.0
8.0						×.		•			- 13	.4 ppm		-615.0
	• • • •					∞.					- 9.3	3 ppm		-614.0
9.0						×,		•			- 12	.5 ppm		613.0
	·•. Ⅲ≡ ≡Ⅲ Ⅲ≡	BEDROCK	; firm, blue to grey, (dry		×.		•			- 42	.7 ppm		
-10.0		Backfilled w END OF BC	ith cuttings to grade DREHOLE AT 10.5	e m							PID	#9		-612.0
														E-611.0
														-610.0
-13.0														609.0
E 14 Ni							<u> </u>							<u>E</u>
Ni	ch	ols Env	vironmen	tal (Cana	I (ehe	ht,		DGGED BY EVIEWED				COMPLETION COMPLETED:		J.5 M
⊥¶⊥					uua) L	uu	•		<u></u>					e 1 of 1

		ne City of Ed			D PERSC								BOREHOLE N		
		Phase II ES	5A sdale Rd & 10155-96		LLING ME		D: S	olid	Sten	n Au	ger		PROJECT NO ELEVATION:		CRD
SAMP			SPT							A-CASI	NG	Γ			
BACK			BENTONITE	PEA GRAVEL			ЭH			GROUT		E			
DEPTH (m)	SOIL SYMBOL		SO DESCRI			SAMPLE TYPE	1		VAF	CAR POUF	2		COMMI	ENTS	ELEVATION (m)
0.0		hydrocarbo			/	M		•		•			- 38.7 ppm - 381.3 ppm		-622
-2.0		SILT: soft,	grey, moist, hydroca	arbon odour		X					•		- 3156 ppm - 2377 ppm		E-621
-3.0						M					•		- 2812 ppm - 2079 ppm		620
-4.0		- increasin	g sand at 3.9 m			X					•		- 3662 ppm		-619
5.0		- becominę	g brown, no hydrocai	rbon odour at 4.7 m		X					•		- 3188 ppm		-61
-6.0						M N			•	•			- 512.4 ppm - 205.5 ppm		-61
·7.0	 	SAND AN inclusions,	D GRAVEL: silt, clay damp	/, loose, brown to bl	ack, coal	×.			•				- 60.6 ppm		-61
·8.0	· • •. • • •					X			•				- 170.6 ppm		-61
9.0						M M			•				- 75 ppm - 80.7 ppm		-61
						X			•				- 97 ppm		-61
-10.0 -11.0 -12.0 -13.0	 Ⅲ <u></u>	Backfilled	K: blue to grey, hydro with cuttings to grade 30REHOLE AT 10.5	9	ſ	×				•			- 311.8 ppm - PID #9		61
12.0							-> < < < = = = = = = = = = = = = = = = =								61
13.0							••••••								- 61
14								OGGE	D BY	: H.B.			COMPLETIC	ON DEPTH: 1	0.5 m
Ni	cho	ols En	vironmen	tal (Cana	da) L	td	R	EVIEV	VED E	3Y: T. <i>I</i>	Ą.		COMPLETE		ge 1

 CLAY FILL: some sand, some silt, soft to firm, low notified, damp CLAY FILL: some sand, some silt, soft to firm, low notified, damp CLAY FILL: some sand, some silt, soft to firm, low notified, damp SAPA MAR STATE STATE		ne City of E								aor		BOREHOLE NO: A		
SAMPLE TYPE SPT NO RECOVERY CRAB A-CASING III SPLIT SPOON III CORE BACKFILL TYPE BENTONITE PEA GRAVEL III SOUGH COMMENTS COMMENTS 00 00 00 00 100							ט: 5	ula St	em Au	yer				<u>.</u>
BACKFILL TYPE DELITONITE PEA GRAVEL ESLOUGH GROUT DELIL CUTINGS SAND SOIL DESCRIPTION CLAY FILL: some sand, some sill, soft to firm, low paticity, trown to black, trace pebbles, coarse tragments, notified, damp CLAY FILL: some sand, some sill, soft to firm, low paticity, trown to black, trace pebbles, coarse tragments, notified, damp CLAY FILL: some sand, some sill, soft to firm, low paticity, trown to black, trace pebbles, coarse tragments, software sand, some sill, black to grey, hydrocarbon odour at 3.6 m SULT: losse, wood debris, grey, damp - increasing clay, increasing molsture, orange at 7.3 m - increasing clay, increasing molsture, orange at 7.3 m								F	A-CAS	ING	П			
Image: Solution of the second seco											<u> </u>			
Image: plasticity, brown to black, trace pebbles, coarse fragments, motiled, damp -43.9 ppm Image: plasticity, brown to black, trace pebbles, coarse fragments, motiled, damp -36.5 ppm Image: plasticity, brown to black, trace pebbles, coarse fragments, motiled, damp -36.5 ppm Image: plasticity, brown to black, trace pebbles, coarse fragments, motiled, damp -36.5 ppm Image: plasticity, brown to black, trace pebbles, coarse fragments, motiled, damp -36.5 ppm Image: plasticity, brown to black, trace pebbles, coarse fragments, motiled, damp -36.5 ppm Image: plasticity, brown to black, trace pebbles, coarse fragments, motiled, damp -36.5 ppm Image: plasticity, brown to black, trace pebbles, coarse fragments, motiled, damp -45.7 ppm Image: plasticity, brown to black, mosil -229.3 ppm Image: plasticity, brown to black, mosil -47.2 ppm Image: plasticity, brown to black, mosil -40.9 ppm Image: plasticity, brown to black, mosil -40.9 ppm Image: plasticity, brown to black, mosil -7.2 ppm Image: plasticity, black, mosil -7.2 ppm	DEPTH (m) SOIL SYMBOL		DESCRI	PTION		SAMPLE TYPE		VA	APOUI ● PPM ◆	२		COMMENT	S	FI EVATION (m)
13.0	1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 • • • • 9.0 10.0 11.0 12.0 13.0	 increasing decreasing decreasing decreasing SILT: loosing increasing SAND AN inclusions Backfilled 	brown to black, trace lamp ng sand, increasing m ing sand, decreasing oon odour at 3.6 m se, wood debris, grey ng clay, increasing ma ID GRAVEL: some cl , brown to black, moi	pebbles, coarse noisture at 2.8 m silt, black to grey , damp pisture, orange a lay, some silt, loc st	t 7.3 m			•				- 35.6 ppm - 36.5 ppm - 5.4 ppm - 39.8 ppm - 45.7 ppm - 45.7 ppm - 47.2 ppm - 48.5 ppm - 40.9 ppm - 31.5 ppm - 27 ppm - 9.7 ppm - 16.6 ppm		-62: -62: -61: -61: -61: -61: -61: -61: -61: -61
						1 1		DGGED I	BY: H.B.			COMPLETION DEI	<u>-</u> РТН: 9.1 m	n
	Nich	ols Er	nvironmen	tal (Can	ada) I	.td				A.				<u>·</u>
Nichols Environmental (Canada) Ltd. LOGGED BY: H.B. COMPLETION DEPTH: 9.1 m REVIEWED BY: T.A. COMPLETED: 10/30/14				un (Cun			••						Page 1	1

00 It is some clay, loose, soft, wood fragments, brown, dy - 18.3 ppm - 18.3 ppm - 620			e City of Ed			IELD PERSC							BOREHOLE NO: A	
SMME LYPE SPT OPRECOVERY GRADE Consider Description Descriptio								ט: S	olid Ste	em Aug	ger			
SACKFILL TYPE DENTONITE PEAGRAVEL Issued COMMENTS Commentation Image: Solid Bigs SOL DESCRIPTION Image: Solid Bigs COMMENTS Image: Solid Bigs COMMENTS Image: Solid Bigs COMMENTS Image: Solid Bigs Image: Solid Bigs Image: Solid Bigs Comments Image: Solid Bigs Image: Solid Bigs										A-C.451	NG	Г		
Bit SOIL DESCRIPTION HydroccareBon VAPOUR COMMENTS COMMENTS 0 10								H		_		F		
00 SLT: some clay, losse, soft, wood fragments, brown, dry - uccoming grey at 0.5 m - 18.3 ppm 10 - sand layer, losse, brown from 0.8 m to 1.2 m - 33.4 ppm - 62 20 SAND: losse, brown, coal inclusions, damp - 25.7 ppm - 62 20 SAND: losse, brown, coal inclusions, damp - 25.7 ppm - 62 20 SAND: losse, brown, coal inclusions, damp - 25.7 ppm - 62 20 SAND: losse, brown, coal inclusions, damp - 27.7 ppm - 29.7 ppm 20 Backfilled with cutlings to grade - 29.7 ppm - 90.7 ppm 40 - 20.7 ppm - 90.7 ppm - 90.7 ppm 50 Backfilled with cutlings to grade - 90.7 ppm - 90.7 ppm 60 - 90 - 90.7 ppm - 90.7 ppm - 90.7 ppm 100 - 90.7 ppm - 90.7 ppm - 90.7 ppm - 90.7 ppm 100 - 90.7 ppm - 90.7 ppm - 90.7 ppm - 90.7 ppm 100 - 90.7 ppm - 90.7 ppm - 90.7 ppm - 90.7 ppm 100 - 90.7 ppm - 90.7 ppm - 90.7 ppm - 90.7 ppm 100 - 90.7 ppm	DEPTH (m)	SOIL SYMBOL					SAMPLE TYPE		HYDR(VA		BON R			ELEVATION (m)
LOGGED BY: H.B. COMPLETION DEPTH: 4.5 m	2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 11.0 12.0		- becoming - sand laye - coal inclus SAND: loos Backfilled v	grey at 0.5 m r, loose, brown from sions at 1.6 m se, brown, coal inclu	n 0.8 m to 1.2 m Isions, damp	prown, dry				,		4	- 33.4 ppm - 15.3 ppm - 18.7 ppm - 25.7 ppm - 31.3 ppm - 30.1 ppm - 26.6 ppm - 29.7 ppm	625. 624. 623. 624. 621. 622. 619. 611. 611. 611. 611. 611.
Nichols Environmental (Canada) Ltd. REVIEWED BY: T.A. COMPLETED: 10/27/14		:ha	ols En	vironmen	tal (Can	ada) L	.td	• R			۰۹			'TH: 4.5 m

CLIEN	IT: TI	he City of Edmonton		FIELD PERSC	NN	EL: F	I. BAK	KER			BC	REHOLE NO	: A5:14-0)4
PROJ	ECT:	Phase II ESA		DRILLING ME	TH	DD: S	Solid S	Stem A	Auger		PR	OJECT NO:	14-214-C	RD
LOCA	TION	I: 9469 Rossdale Rd & 10155-96 A	Ave NW, Edm	CO-ORDINAT	ES:						EL	EVATION: 62	24.872 m	
SAMF	PLE T	YPE SPT						A-C			SPI	LIT SPOON	CORE	
BACK	FILL	TYPE BENTONITE	PEA GRAV	′EL ∭SI	_OU	GH		GR	TUC		DRI	ILL CUTTINGS	SAND	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIP			SAMPLE TYPE		,	PROCA VAPO ◆ PPM 100	UR	'N 10⁴		COMME	NTS	ELEVATION (m)
-1.0		SILTY CLAY: loose, hard, low pla damp - becoming light brown at 1.2 m	asticity, grey t	o brown,	N N N		•			***	- 9.8 - 10	7.8 ppm 8 ppm 9.3 ppm		624.0
E-2.0	N.Y.	SAND: loose, brown, coal inclusion	ons, dry		\times						- 9.4	4 ppm		F
-3.0		SILT: loose, brown, damp	<u> </u>		N N	••••	•				-	2.2 ppm 3.3 ppm		622.0
-4.0		SAND: loose, salt and pepper, co	oal inclusions,	dry	N N	· · · · · · · · · · · · · · · · · · ·	•					7.3 ppm 9.4 ppm		621.0
5.0		Backfilled with cuttings to grade END OF BOREHOLE AT 4.5 m			X						- 30 - PI).2 ppm D #9		620.0
														619.0
61/6/7 L														617.0
														616.0
						••••								615.0
														-614.0
										·····				613.0
														612.0
z = 14						::::		::::: D BY: H	R :::			COMPLETION		<u>-611.0</u>
Ni	ch	ols Environmenta	al (Cai	nada) I	tc	l. †		ED BY:				COMPLETION COMPLETED:		, 111
				, 1										1 of 1

PROJECT: PROVE PROVE PROVE PROVE PROVE PROVE PROVE PROVE PROVE LOCATION: 9469 BSST \$\$ CONSTANCE ELEVATION: 624 71 m CLEVATION: 624 71 m CLEVATION: 624 71 m BACKFILL TYPE BST \$\$ CONSTANCE Groun COMMENTS ELEVATION: 624 71 m BACKFILL TYPE BENTONTE PEA GRAVEL SCOUCH COMMENTS ELEVATION: 624 71 m 00 CLAY FILL some still, some still, back, coal inclusions, dry SCOUCH COMMENTS COMMENTS 10 CLAY FILL some still, back, coal inclusions, dry 10 10 -7.7 pm 10 CLAY FILL some still, back, coal inclusions, dry 14.4 ppm 30 CLAY FILL some sand, some still, black, coal inclusions -14.4 ppm 40 CLAY FILL some sand, some still, black, coal inclusions -14.4 ppm -10 -100 fb0 fb0 -14.1 ppm -10 -100 fb0 -11.1 ppm -10 -100 fb0		ne City of Edmonton			L: H. BAKKER		BOREHOLE NC		
SAMPLE TYPE SPT IND RECOVERY CARAB Index cases III SPLIT SPDON III COPE BACKFUL TYPE BENTOWITE IPEA CASAVEL III SPLIT SPDON COMMENTS S00 CLAY FILL some split some sand loase, black to brown, coal inclusions, dry III SPLIT SPDON III S): Solid Stem	Auger			RD
BACKFLL TYPE PROTONITE PRACEAVE PROTONITE PRACEAVE PROTONITE PRACEAVE PROTONITE PRACEAVE PROTONITE PROTONITE PRO									
Image: Solution of the second seco						-			
CLAY FILL: some silt, some sand, loose, black to brown, coal inclusions, while inclusions, div Coal inclusions, while inclusions, div Coal inclusions, while inclusions, div Coal inclusions, while inclusions, div CLAY FILL: loose, brown, div CLAY FILL: loose, brown, div CLAY FILL: loose, brown, div CLAY FILL: some sand, some silt, black, coal inclusions - red brick and concrete bits at 3.1 m - increasing sand, brown, becoming moist at 4.6 m - increasin								JAND	T
10 coal inclusions, while inclusions, dry -7.7 ppm 20 SILT FILL: loose, brown, dry -13.4 ppm 20 SILT FILL: loose, brown, dry -14.4 ppm 30 CLAY FILL: some sand, some sill, black, coal inclusions -10.9 ppm -red brick and concrete bits at 3.1 m -19.6 ppm -increasing sand, brown, becoming moist at 4.6 m -14.1 ppm -increasing sand, brown, becoming moist at 4.6 m -14.1 ppm -increasing sand, brown, becoming moist at 4.6 m -14.1 ppm -increasing sand, brown, becoming moist at 4.6 m -14.1 ppm -increasing sand, brown, becoming moist at 4.6 m -14.1 ppm -increasing sand, brown, becoming moist at 4.6 m -14.1 ppm -increasing sand, brown, becoming moist at 4.6 m -14.1 ppm -increasing sand, brown, becoming moist at 4.6 m -14.1 ppm -increasing sand, brown, cobbies, grained sand, irace clay, -14.1 ppm -increasing sand, brown, cobbies, grained sand, irace clay, -17.7 ppm -increasing sand, brown, cobbies, grained sand, irace clay, -17.7 ppm -increasing sand, brown, cobbies, grained sand, irace clay, -17.7 ppm -increasing sand, brown, cobbies, grained sand, irace clay, -17.7 ppm <td< td=""><td>SOIL SYMBOL</td><td>DESCRIPTI</td><td></td><td></td><td>VAP • PF</td><td>OUR ™◆</td><td>COMME</td><td>NTS</td><td>ELEVATION (m)</td></td<>	SOIL SYMBOL	DESCRIPTI			VAP • PF	OUR ™◆	COMME	NTS	ELEVATION (m)
 CLAY FILL: some sand, some silt, black, coal inclusions - red brick and concrete bits at 3.1 m - red brick and concrete bits at 3.1 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, becoming moist at 4.6 m - increasing sand, brown, cobbles, pebbles, dry - increasing sand, increasing sand, increase clay, increase site, loose, brown, cobbles, pebbles, dry - increasing become site, brown, cobbles, pebbles, dry -		coal inclusions, white inclusions, dry		1, M M M	•		- 8.5 ppm - 13.4 ppm		624
30 - 10.9 ppm - red brick and concrete bits at 3.1 m - 19.6 ppm 40 - 31.1 ppm - increasing sand, brown, becoming moist at 4.6 m - 14.1 ppm 50 - 11.1 ppm - 10.9 ppm - 21.1 ppm - 21.7 ppm - 21.7 ppm - 10.9 - 17.7 ppm		5			•		- 14.4 ppm		Ē
 - Fed blick and concrete bits at 3.1 m - 19.6 ppm - 31.1 ppm - 31.1 ppm - 14.1 ppm - 21.1 ppm - 21.7 pp				S 🛛			- 10.9 ppm		E-622
 4.0 5.0 - increasing sand, brown, becoming moist at 4.6 m - 31.1 ppm - 14.1 ppm - 21.1 ppm - 21.7 ppm<!--</td--><td></td><td>- red brick and concrete bits at 3.1 n</td><td>n</td><td><u>_</u></td><td></td><td></td><td></td><td></td><td></td>		- red brick and concrete bits at 3.1 n	n	<u>_</u>					
 - increasing sand, brown, becoming moist at 4.6 m - 14.1 ppm - 21.1 ppm - 21.7 ppm <l< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>E-62</td></l<>									E-62
 5.0 5.0 6.0 6.0 7.0 7.0 8.0 9.0 9.17 ppm 9.21.7 ppm 9.17 ppm 9.17 ppm 9.2 0 9.17 ppm 9.17 ppm 9.18.9 ppm 9.18.9 ppm 9.18.9 ppm 9.18.9 ppm 9.2 0 9.18.9 ppm 9.2 0 9.18.9 ppm 9.2 0 9.18.9 ppm 9.2 0 9.10 0<td></td><td></td><td></td><td></td><td>•</td><td></td><td>- 51.1 ppm</td><td></td><td></td>					•		- 51.1 ppm		
8.0 Image: trace silt, loose, brown, cobbles, pebbles, dry - 17 ppm 9.0 Image: trace silt, loose, brown, cobbles, pebbles, dry - 32 ppm 9.0 Image: trace silt, loose, brown, cobbles, pebbles, dry - 32 ppm 9.0 Image: trace silt, loose, brown, cobbles, pebbles, dry - 32 ppm 9.0 Image: trace silt, loose, brown, cobbles, pebbles, dry - 32 ppm 9.0 Image: trace silt, loose, brown, cobbles, pebbles, dry - 32 ppm 9.0 Image: trace silt, loose, brown, cobbles, pebbles, dry - 32 ppm 9.0 Image: trace silt, loose, brown, cobbles, pebbles, dry - 32 ppm 9.0 Image: trace silt, loose, brown, cobbles, pebbles, dry - 32 ppm 9.0 Image: trace silt, loose, brown, cobbles, pebbles, dry - 32 ppm 9.0 Image: trace silt, loose, brown, cobbles, pebbles, dry - 32 ppm 9.0 Image: trace silt, loose, brown, cobbles, pebbles, dry - 32 ppm 9.0 Image: trace silt, loose, brown, cobbles, pebbles, dry - 32 ppm 9.0 Image: trace silt, loose, brown, cobbles, dry - 36.7 ppm 9.0 Image: trace silt, loose, brown, cobbles, dry - 8.3 ppm 9.0 Image: trace silt, loose, brown		- increasing sand, brown, becoming	moist at 4.6 m	M	•		- 21.1 ppm		61
BEDROCK: firm, low plasticity, blue to grey, damp BEDROCK: firm, low plasticity, blue to grey, damp - 32 ppm - 32.6 ppm - 36.7 ppm - 36.7 ppm - 18.9 ppm - 8.3 ppm - 8.3 ppm - 8.3 ppm - 9.10 #9		SAND AND GRAVEL: coarse-grain trace silt, loose, brown, cobbles, pet	ed sand, trace clay, obles, dry				17 ppm		6
10.0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		BEDROCK: firm, low plasticity, blue	to grev. damp						6
Image: Second ppm Into Image: Second ppm <td></td> <td>,</td> <td>y - y y</td> <td></td> <td>•</td> <td></td> <td>*</td> <td></td> <td>61</td>		,	y - y y		•		*		61
1.0 Image: Second s					•				Ē
1.0 III = - 18.9 ppm 2.0 III = - 8.3 ppm 3.0 Backfilled with cuttings to grade - PID #9 3.0				M					E-6
2.0 Backfilled with cuttings to grade END OF BOREHOLE AT 12.1 m 3.0 3.5 3.5 3.5 3.6 3.6 3.6 3.7 3.8 3.9 3.0 3.5 3.0 3.5 3.	′ ≡			X	•		- 18.9 ppm		Ē
2.0 III≡ Backfilled with cuttings to grade END OF BOREHOLE AT 12.1 m - PID #9 3.0				×			- 8.3 ppm		-6
3.5	յ ≡						- PID #9		
	5								6 ⁻
LOGGED RY: H.B. COMPLETION DEPTH: 12	5								E
Nichols Environmental (Canada) Ltd. REVIEWED BY: T.A. COMPLETED: 11/3/14	licho	ols Fnyironmontol	(Canada	64 T (.1 m

CLIEN	IT: T	he City of Edmonton		FIELD P	ERS	SONNE	L: H. E	BAKKE	R			BOREHOLE N	0: A6:14-1	5
		Phase II ESA					D: So	lid Ste	m Auge	er		PROJECT NO:	14-214-C	RD
		: 9469 Rossdale Rd & 10155-96 A										ELEVATION: 6		
SAMF						GRAB			A-CASING	3		SPLIT SPOON	CORE	
BACK	FILL	TYPE BENTONITE	PEA GRAV	ΈL]slougf	1		GROUT			DRILL CUTTINGS	SAND	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTI	ON		SAMPLE TYPE	1	V	APOL ◆ PPM ◀		_	, 	WELL COM DAT		ELEVATION (m)
= 0.0	\boxtimes	CLAY FILL: loose, brown, dry										- Stick-up (0.89	m)	Ē
-1.0		SAND FILL: some clay, some silt to black, coal inclusions, dry	, loose, dark l	orown	N N		•					- 40 ppm - 32 ppm		625.0
-		- some sand, brown at 1.2 m												
	\bigotimes	SILT FILL: some clay, firm, brown	n, moist				•					- 35.9 ppm		
-2.0 E					Χ	···) (((##	•					- 35.3 ppm		- 624.0
		SAND FILL: some silt, gravel, loc	ose, black, coa	al	Х		•					- 33.4 ppm		
3.0 		inclusions, dry			Х		•					- 31.2 ppm		E-623.0
		- red brick, concrete, glass, clay a	al 2.7 III		X	····	•					- 15.7 ppm		
-4.0					Х		•					- 13.8 ppm		E-622.0
					Х							- 7.9 ppm		
5.0					M		•					- 15.1 ppm		621.0
Ē					М		•					- 25.4 ppm		
-6.0		SILT: soft, brown, some coal, mo	ist		N		•					- 25 ppm		E-620.0
E					Х							- 8.1 ppm		
-7.0		SAND: loose, black, pebbles, dry	,									o. i ppili		-619.0
										•	•			
Ē														
8.0 														E-618.0
∜⊑_9.0 5 E						· · · · · · · · · · · · · · · · · · ·						- 50.8-mm 0.254 PVC Screen	Slotted	617.0
					Х	···	•				- •	- 55.4 ppm		
	•••••	- increasing clay, wet at 9.9 m			Х		•					- 58.6 ppm		616.0
					Х	••••	*			· · · · · · · · · · · · · · · · · · ·	- -	- 60.5 ppm		Ę⊻
		BEDROCK: firm, blue to grey, dr	у		Х	••••	•				Ξ	- 24.9 ppm		615.0
												- 34.4 ppm		
2 														E 614.0
		Monitoring well installed	November of	1 2014	X						<u>11 III</u>	- 33.6 ppm - PID #9		E
+17-1 1 1 1		Groundwater level at 10.55 m on END OF BOREHOLE AT 12.1 m		J, ZU14										Ē
₹ 13.0														613.0
- 13.5														<u>E</u>
Ni	ch	ols Environmenta	al (Car	nada)	[.td		GGED B VIEWED	<u>ү:</u> н.в. ВҮ: Т.А.			COMPLETIC	<u>N DEPTH: 12</u> D: 11/3/14	. 1 10
	~ 11		m (Uul		· / ·		•							e 1 of 1

		ne City of Edmonton			BOREHOLE NO: A6						
				D: So	lid Stem	Auger		PROJECT NO: 14-214-CRD			
		: 9469 Rossdale Rd & 10155-96 Ave NW, Edm			CASING		ELEVATION: 624.93				
SAMPLE TYPE ■ SPT □ NO RECOVERY □ GI BACKFILL TYPE ■ BENTONITE □ PEA GRAVEL □ SI					4		-CASING ROUT			CORE SAND	
DACK					1	<u>.</u>	KUUI			SAND	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	⊦ 10	VAP ♦ PP			COMMENTS			
- 0.0 -		CLAY FILL: loose, brown, dry		×		•		- 4	42.5 ppm		
- 		SILT FILL: some sand, some clay, soft, brown	•	⊠	· · · · · · · · · · · · · · · · · · ·	*		- 5	50.4 ppm		E-624.0
Ē		SAND FILL: loose, brown to black, coal inclusions, oxidation inclusions, brick, masonry, glass, dry SILT FILL: some sand, soft, brown, some brick, glass, damp				•	•••••••••••••••••••••••••••••••••••••••	- 4	- 44.8 ppm		Ē
2.0					,	•		- 4	46.7 ppm		E-623.0
-		COAL FILL: loose, black, slag, ash, dry		≤) (((HR	٠	•••••••••••••••••••••••••••••••••••••••	- 5	50.8 ppm		Ē
-3.0				⊠		•		-	36 ppm		-622.0
				×		•	•••••••••••••••••••••••••••••••••••••••	- 2	22.2 ppm		
-4.0				×	· · · · · · ·	•		-	19.9 ppm		-621.0
		SILT: some clay, soft, brown, damp		\times					34.3 ppm		
5.0				\boxtimes		•		- 4	43.2 ppm		-620.0
		- some sand at 5.4 m		×		•			49.2 ppm		Ē
-6.0						•			38.2 ppm		E 619.0
					· · · · · · · · · · · · · · · · · · ·				47.9 ppm		
-7.0	 	SAND AND GRAVEL: coarse-grained sand, lo to black, pebbles, cobbles, damp						41.2 ppm		E 618.0	
	• · ·	····· I									E
8.0	•				· · · · · · · · · · · · · · · · · · ·				51.4 ppm		- 617.0
	4 . 4								33.2 ppm		
	• •	- increasing clay at 8.7 m		\boxtimes					32.3 ppm		E
9.0	•	5 9		\boxtimes				- 2	24.9 ppm		
	• • • •			⊠) (((KR	•		- 2	20.4 ppm		
-10.0	• • • • •			⊠				- 1	16.1 ppm		-615.0 -
9.0 10.0 11.0 12.0 13.0 13.5		Backfilled with cuttings to grade END OF BOREHOLE AT 10.5 m						- I	PID #9		
-11.0		END OF BOREHOLE AT 10.3 III									-614.0
											E
-12.0					· · · · · · · · · · · · · · · · · · ·			**			E-613.0
					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						
-13.0											E-612.0
- 13.5											
Ni	ch4	ols Environmental (Ca	LO	GGED BY: VIEWED BY			COMPLETION DEPTH: 10.5 m COMPLETED: 11/3/14				
1 11				0					1 of		

CLIENT: The City of Edmonton FIE					FIELD PERSONNEL: H. BAKKER								BC	BOREHOLE NO: A6:14-17			
				DRILLIN	RILLING METHOD: Solid Stem Auger								PROJECT NO: 14-214-CRD				
LOCATION: 9469 Rossdale Rd & 10155-96 Ave NW, Edr												ELEVATION: 625.994 m					
SAMPLE TYPE SPT NO RECO					GRAB A-CASING					SPLIT SPOON CORE							
BACKFILL TYPE BENTONITE PEA GRA			/EL		SLOUG	ΞH]GROUT	-			ILL CUTTINGS	SAND	-		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION			SAMPLE TYPE		HYDROCARBON VAPOUR							DAT		ELEVATION (m)	
0.0		CLAY FILL: loose to firm, brown to black, mottl coal inclusions, oxidation inclusions, dry to darr			M		•						- 18	ick-up (0.95 .2 ppm	m)		
1.0				\ge		۲						- 21	.4 ppm		-625.0		
		SILT FILL: soft, low plasticity, brow		\ge	••••	٠				/ </td <td></td> <td>- 21</td> <td>.2 ppm</td> <td></td> <td>Ē</td>		- 21	.2 ppm		Ē		
-2.0					×	••••	٠						- 25	.4 ppm		-624.0	
					\ge	•••••••	٠	+ + A A A			/ <-<-		- 26	.8 ppm		Ē	
-3.0					\ge	••••					> < < < >		- 32	.6 ppm		623.0	
					\times	••••						- 34	.2 ppm				
4.0		SAND FILL: loose, dark brown, dr	у		×	••••							- 33	.5 ppm		-622.0	
					\ge	••••	۲						- 25	.6 ppm		Ē	
-5.0		harrie te blada blada and and a			\times		•					•••	- 32	.8 ppm		621.0	
		- becoming black, high coal conter	nt at 5.1 m		\times		•						- 29	.2 ppm			
6.0					×		•	a 1					- 27	.1 ppm		620.0	
		SILT: soft, low plasticity, high grav	el content h	rown	\times		•						- 26	.1 ppm			
-7.0		wet		10001,	×								- 26	.9 ppm		E-619.0	
			ined cand b		\ge								:- 26	.4 ppm		Ē	
-8.0	. • . • . • . •	SAND AND GRAVEL: coarse-gra brown to black, pebbles, cobbles,		Jose,	\times		•					* - * -	27	ppm		618.0	
2	•				\times	••••	•						: - 22	.3 ppm		Ē	
9.0		- increasing clay at 9.0 m			×	••••		•					- 35	.7 ppm .8-mm 0.254	1 Slotted	617.0	
	• •				\times	· · · · · · · · · · · · · · · · · · ·	۲				> <<<>>		PV(C Screen		Ē	
10.0	. • . • . • •				\times	••••	٠							.2 ppm .4 ppm		-616.0	
	·.·₄ ≣≣	BEDROCK: firm, black to grey to	brown, damr)	\ge	••••	٠	4 1 Y Y					- 10	.6 ppm		Ē	
2					×	٠		4199					- 3.2	2 ppm		E-615.0	
					×			4 6 9 9					- 7.:	3 ppm			
12.0	≡	Monitoring well installed			×		•	4 6 4 4 4						.1 ppm		-614.0	
		Groundwater level at 10.34 m on l	November 20	0, 2014									- PI	D #9		Ē	
13.0		END OF BOREHOLE AT 12.1 m														613.0	
- 13.5									0 == -			-				E	
Nichols Environmental (Canada) Ltd								LOGGED BY: H.B. REVIEWED BY: T.A.						COMPLETION DEPTH: 12.1 m COMPLETED: 11/3/14			
										Page 1 of 1							

APPENDIX E

Nichols Environmental - Standard Protocol Soil Sampling Updated: December 2012 Page 1 of 3

FIELD INVESTIGATION METHODOLOGY - SOIL

Soil Sampling Procedure: Solid Stem Augers

The soils were logged using the Modified Unified Soil Classification system. Soil samples collected from boreholes are typically collected at 0.75 m intervals with any variation in sample collection depth noted on the borehole logs. The standard sampling procedure is as follows:

- 1. Samples collected from the auger were trimmed to remove the outer 5 mm to 10 mm to minimize cross contamination. A clean pair of latex gloves and putty knife were used for the procedure;
- 2. One half of the sample was transferred to a large plastic freezer bag and sealed for subsequent vapour measurement and/or laboratory analysis (inorganic);
- 3. The duplicate portion of the sample for laboratory analyses (organic), was transferred to 125 mL ESS glass jars, which were filled to capacity with soil and fitted with screw down, Teflon[™] lined lids; and
- 4. Laboratory samples were stored in insulated coolers at approximately 4^oC with the appropriate chain of custody information and transported to the analytical laboratory for chemical analyses.

Soil Sampling Procedure: Hollow Stem Augers

The soils were logged using the Modified Unified Soil Classification system. Soil samples were collected at various depth intervals, as depicted on the borehole logs. The sampling procedure is as follows:

- 1. The core sample collected from the A-Casing split spoon sampler was placed on a clean tray on the tailgate of the truck;
- 2. Samples collected from the A-Casing were trimmed to remove the outer 5 mm to 10 mm to minimize cross contamination. A clean pair of latex gloves and putty knife were used for the procedure;
- 3. One half of the sample was transferred to a large plastic freezer bag and sealed for subsequent vapour measurement and/or laboratory analysis;
- 4. The duplicate portion of the sample for laboratory analyses, was transferred to 125 mL ESS glass jars, which were filled to capacity with soil and fitted with screw down, Teflon[™] lined lids; and
- 5. Laboratory samples were stored in insulated coolers with the appropriate chain of custody information and transported to the analytical laboratory for chemical analyses.

Soil Sampling Procedure: GeoProbe

The soils were logged using the Modified Unified Soil Classification system. Soil samples were collected continuously with the Geoprobe, as depicted on the borehole logs. The sampling procedure is as follows:

- 1. The core sample collection tube recovered using the Geoprobe was placed on a clean surface and the tube was split in half to expose the sample core. The sample collection tube was for one-time use only and was disposed of following sampling;
- 2. Using a clean pair of latex gloves and putty knife, samples were collected from the tube at various depth intervals;
- 3. One half of the sample was transferred to a large plastic freezer bag and sealed for subsequent vapour measurement and/or laboratory analysis;
- 4. The duplicate portion of the sample for laboratory analyses, was transferred to 125 mL ESS glass jars, which were filled to capacity with soil and fitted with screw down, Teflon[™] lined lids; and
- 5. Laboratory samples were stored in insulated coolers with the appropriate chain of custody information and transported to the analytical laboratory for chemical analyses.

Soil Sampling Procedure: Excavation

The soil type is noted in field notes as per the Modified Unified Soil Classification system.

Soil samples are collected using the bucket of the excavator within excavations that extend deeper than 1.5 m. Each sample location is measured for depth and tied into a common reference point (reference or 0,0 co-ordinate). Samples along the excavation walls are typically collected every 0.75 m vertically and every 4 m to 5 m horizontally, while base samples are collected every 5 m.

The standard sampling procedure is as follows:

- 1. Samples collected from the bucket of the excavator are collected using a clean pair of latex gloves and putty knife;
- 2. One half of the sample was transferred to a large plastic freezer bag and sealed for subsequent vapour measurement and/or laboratory analysis;
- 3. The duplicate portion of the sample for laboratory analyses, was transferred to 125 mL ESS glass jars, which were filled to capacity with soil and fitted with screw down, Teflon[™] lined lids; and
- 4. Laboratory samples were stored in insulated coolers with the appropriate chain of custody information and transported to the analytical laboratory for chemical analyses.

Hydrocarbon or Volatile Organic Compound Field Vapour Screening

Field subsoil samples are screened for hydrocarbon or volatile organic compound (VOC) vapour content using either a RKI Eagle or a Gastechtor 1238ME Hydrocarbon Surveyor (Gastech) - for hydrocarbons only - or a Photovac 2020 Photoionization Detector (PID) for VOCs - or equivalent detectors - calibrated with a known standard as defined in the operators manual. The screening procedure is as follows:

- 1. The field samples (plastic bag) were allowed to warm-up in ambient temperature conditions (20°C) for approximately 30 minutes to facilitate the release of hydrocarbon vapour or VOCs into the air space within the sample bag. During the winter months the samples are placed below the truck heater to warm them; and
- 2. The airspace is then tested for hydrocarbon or VOC vapour content using the appropriate instrument. The measured hydrocarbon or VOC vapour concentrations are expressed in parts-per-million by volume (ppmv).
- NOTE: Additional soil samples may be collected for laboratory analysis on a project specific basis where numerous analyses are required. Soil bag samples may be collected where only trace metals analyses are to be conducted.

The above protocols were based on the following publications:

- Alberta Environment. 1996. Soil Monitoring Directive, Chemicals Assessment and Management Division, Environmental Regulatory Service; and
- Canadian Council of Ministers of the Environment. 1994. Subsurface Assessment Handbook for Contaminated Sites, The National Contaminated Sites Remediation Program.

FIELD INVESTIGATION METHODOLOGY - GROUNDWATER

Monitoring Well Installation

Groundwater monitoring wells are installed in boreholes as required to determine groundwater elevations and to assess groundwater quality.

Each monitoring well is typically constructed of 50 mm Schedule 40 polyvinyl chloride (PVC) pipe. A slip cap is placed on the bottom of the well to minimize sediment intrusion. A 0.254-mm slot PVC screen is then fixed to the bottom of the well casing as shown on the borehole logs, while solid PVC is used to bring the monitoring well to ground surface. Tubing connections consist of flush-joint threaded couplings. The annular space around the well screen is filled with Sil-9 sand to a minimum of 0.3 m above the well screen. The Sil-9 sand is used to form a filter pack that ensures that formation water can pass easily into the monitoring well.

Above the sand, the borehole is backfilled with bentonite chips to within 300 mm of ground surface. The bentonite is added in a dry chip form, which hydrates to form a seal. This seal allows collection of groundwater from the desired depth interval, and minimizes surface water intrusion.

Monitoring wells are typically completed with flush-mounted, bolt-down road boxes, unless otherwise noted on the borehole logs. Another option would be stickup completions with steel lockable casings. The monitoring well completion details are presented on the borehole logs.

Accessing a Monitoring Well

Prior to accessing a monitoring well, foreign liquids or other materials are cleared from the immediate vicinity of the well. If a monitoring well is submerged beneath water, water is removed from the immediate area. If the water cannot be removed or the well cannot be accessed, access issues are documented and reported directly to the project manager or client for further direction.

Prior to removing the well cap, surface water runoff is diverted or any water trapped within the annulus of the road box is removed. If required, a temporary extension to the top of the monitoring well can be added to prevent surface runoff from entering the monitoring well.

Vapour Screening

Prior to removing the well cap, the vapour screening instrumentation is turned on and allowed to reach the point where vapour concentrations are being measured.

The following is taken from the Nichols Environmental PID Operating Procedures document:

- Prior to removing the groundwater monitoring well cap, foreign liquids or materials are cleared from the immediate area surrounding the well;
- The well cap is removed and the probe/nozzle of the PID is inserted into the well, taking care not to insert the probe into the water and cause blockage or damage to the PID;

- The readings are allowed to stabilize, or come close to stabilization before recording a value;
- The value displayed on the PID screen is recorded; and
- The probe/nozzle of the PID is removed from the monitoring well and allowed to return to zero or ambient conditions.

Groundwater Elevation

The depth to groundwater is measured with a water tape or interface probe by placing the instrument in the well and measuring to either the top of casing or ground level. The measurement is taken to the nearest one hundredth of a metre.

The depth to groundwater is also measured as described above, prior to collecting the groundwater samples.

The groundwater elevation is determined by subtracting the depth to groundwater from the surface elevation. The groundwater surface elevation is determined by survey.

Free product in a monitoring well can be either a light non aqueous phase liquid (LNAPL) or dense non aqueous phase liquid (DNAPL). Free product accumulations are measured with an interphase probe. If free product (LNAPL) is encountered in the monitoring well, the top and bottom of the thickness is measured (which is equivalent to the thickness of free product). Free product accumulations are measured to the nearest centimetre.

DNAPL is typical of solvents and most commonly as chlorinated solvents, which are heavier than water and sink; hence the free product accumulation would be present in the bottom of the well. Therefore, free product measurement is from the bottom of the monitoring well up to get a thickness.

Groundwater Well Development

Following the installation of a groundwater monitoring well, the well must be developed by purging a minimum of ten well volumes of groundwater. The groundwater is purged using a dedicated, disposable bailing tube, Waterra foot valve pumping system, or submersible pump. Well development will ensure representative measurements of depth to water level and allow for proper groundwater sampling following purging.

Standard Groundwater Well Purging

The groundwater monitoring wells are purged of three well volumes prior to collecting the groundwater samples. The groundwater is purged using either a dedicated disposable bailing tube, Waterra, peristaltic, submersible or bladder pumps. Purging the wells prior to sample collection reduces the potential of sampling stagnant water and provides a more representative sample.

Nichols Environmental - Standard Protocol Groundwater Well Installation and Sampling Updated: January 2015 Page 3 of 6

Standard Groundwater Sampling

Groundwater samples are collected from the monitoring wells after purging and recovery. The samples are collected using either a dedicated disposable bailing tube, Waterra, peristaltic, submersible or bladder pump. New sections of silicone or Waterra tubing used for each monitoring well. Groundwater samples are collected in sample bottles specific to the type of chemical analysis being conducted. Sample preservatives are also added depending on the type of chemical analysis conducted. The analytical laboratory provides sample bottles and associated preservatives.

Low-Flow Groundwater Sampling

Low-flow groundwater sampling differs from standard groundwater sampling primarily through the use of minimal or no purge methods. A pump (peristaltic, submersible, or bladder) and associated tubing is slowly lowered to approximately the middle of the installed well screen interval and groundwater is pumped at a slow rate (less than or equal to 1 L/min) through a multi-parameter meter until parameter concentrations stabilize. Stabilization of these parameters indicates that fresh groundwater is entering the monitoring well and that a sample could be collected.

The objective of low-flow sampling is to minimize stress (drawdown) to the groundwater system. Typically, flow rates in the order of 0.1 - 0.5 L/min are used. However, this is dependent on site-specific hydrogeology. Flow rates are adjusted during the initial pumping to determine a steady state flow rate sufficient for the specific site. Sufficient flow rates are characterized by groundwater drawdown of less than 30 cm during continued pumping.

If groundwater recharge on the site is not sufficient to complete low-flow sampling, manual purging of the monitoring wells is completed and then the monitoring wells are allowed to recharge. The pump is then utilized to pass groundwater through a multi-parameter meter to determine in situ groundwater parameter concentrations. Stabilization of the in situ parameters may not be achieved if groundwater recharge is slow. Samples are collected within two hours of purging and no more than 24 hours can elapse between purging and sampling.

Using an In-situ TROLL[®] 9500 multi-parameter meter complete with a flow-through cell and either a GeoPump Easy-Load II[®] or Spectra Field-Pro variable-rate peristaltic pump (unless a specialized pump is required), field readings for pH, oxidation reduction potential (ORP), temperature, electrical conductivity (EC), and dissolved oxygen (DO) are collected. Readings are taken every one to three minutes until stabilization occurs. Stabilization of in situ parameters is characterized by three consecutive measurements which meet the following standards:

- pH = ±10% or ±0.1 units;
- ORP = $\pm 10\%$ or ± 10 millivolts (mV);
- Temperature = $\pm 5\%$ or ± 0.5 °C;
- EC = $\pm 10\%$ or ± 5 microSiemens per centimetre (μ S/cm);
- $DO = \pm 10\%$ or ± 0.2 milligrams per litre (mg/L);

Once field stabilization has occurred, the flow-through cell is disconnected from the pumping system and groundwater samples are collected into laboratory-specific bottles. There may be situations where geochemical parameters will not stabilize. As such, if the monitored parameters do not stabilize after purging three to five well volumes, a field note is made, purging is

discontinued and sampling is competed. Sample collection flow rates are less than 0.5 L/min and groundwater is transferred directly from the end of the tubing into the sample container.

Preservation Methodology

Preservation and field filtering of groundwater samples are completed based on the type of laboratory analysis required.

Instructions and protocols required by the laboratory for the samples to be submitted for analysis are reviewed. If preservative is required, the sample container is filled approximately threequarters full with the groundwater sample before the preservative is added and then is filled to the top of the container with the remainder of the sample. The sample containers are kept closed until they are ready to be filled. All sample containers are filled as full as possible without overflow and without trapped airspace. Overfilling a sample container may result in the loss of the preservative. Airspace can potentially affect the pH of some groundwater samples. Larger sample bottles are filled first, and then the flow rates are reduced to approximately 0.1 L/min for volatiles and filtered samples.

The pump, associated tubing, and the flow-through cell are cleaned with distilled water after each sample is collected and prior to the next sample being collected. This minimizes the risk of cross-contamination of the groundwater samples.

Organics

All organic samples are collected and preserved in glass bottles.

Benzene, toluene, ethylbenzene and xylenes (BTEX) are collected in triplicate 40-mL clear glass vials with a penetrable septum. The samples are normally preserved with a sodium bisulphate tablet or with a preservative provided by the laboratory. Petroleum hydrocarbon (PHC) Fractions 1 through 4 are collected in a single 1-L amber bottle without preservative or in two 250-mL amber bottles with a sodium bisulphate tablet.

Volatile organic compounds (VOCs) are collected in triplicate 40-mL clear glass vials with a penetrable septum. The samples are normally preserved with sodium bisulphate or with a preservative provided by the laboratory.

All sample bottles are filled to capacity with no headspace and stored in coolers at approximately 4°C prior to and during transport to the analytical laboratory. If headspace is noted (bubbles larger than 1 mm are present), the sample is discarded and a new sample is collected in a new sample container.

Groundwater samples containing organic contaminants are not filtered. Aeration of the groundwater is avoided during transfer from the well to the sample container. Sample flow rates are between 0.1 and 0.2 L/min.

Inorganics

Inorganic samples are collected and preserved (if necessary) in plastic bottles. The only exception to this may be for dissolved oxygen.

There are two accepted field practices for the collection of metals samples depending on the type of analysis required. Dissolved metals analysis requires field filtering, followed by acidifying the sample. Extractable metals analysis requires acidifying without field filtering.

Lead groundwater samples are collected in a 100-mL polyethylene bottle. The samples are preserved with 1 mL of 1:3 nitric acid. Trace metals groundwater samples are collected in 250-mL polyethylene bottles. The samples are preserved with 5 mL of 1:5 nitric acid.

All sample bottles are filled to capacity with no headspace and stored in coolers at approximately 4°C prior to and during transport to the analytical laboratory.

Duplicate Samples

Duplicate groundwater samples are collected to determine the precision of field sampling methods, laboratory analytical methods, and environmental heterogeneity. To eliminate environmental heterogeneity errors, split samples are generally collected instead of duplicate sampling in series.

When duplicate groundwater samples are required for a project, sampling will be completed as a split sample from a common sample bottle. Groundwater can be sampled using either of the standard or low flow sampling methods described above. Groundwater is bailed or pumped into a common bottle of the same material that the destination sample bottles are made from (i.e., inorganic parameters are sampled from a common plastic bottle and organic parameters are sampled from a common plastic bottle and organic parameters are sampled from a common plastic bottle and organic parameters are sampled from a common plastic bottle bottles: a sample bottle labeled with the monitoring well name, and a sample bottle labeled DUP. Duplicate groundwater samples are separated into the bottles sequentially (i.e., monitoring well routine bottle, then the duplicate routine bottle, monitoring well metals bottle, then the duplicate metals bottle). The common bottle is double the size of the largest sample bottle to avoid having to refill the common bottle more than once to fill the same set of sample/duplicate bottles.

When field filtering is required, the groundwater is field filtered prior to entering the common bottle. Preservation of the groundwater samples is completed after the groundwater sample has been split into each of the respective sampling bottles, as preservation chemical volumes are specifically measured to match the final sampling bottle volume. Once preservation chemicals have been added, each bottle is inverted several times to allow the preservative to thoroughly mix.

Field Blank Samples

Field blank samples determine if external sources of contamination, such as from the atmosphere, bottle media, preservatives, or sample preparation area, are present in a data set. Field blank samples are deionized or demineralized water which is subjected to the same sampling methods as the groundwater samples themselves. Field blanks can be prepared in the laboratory or in the field during sampling. Field blanks are completed in an area of the site where there is likely to be

the most airborne contamination (i.e., around fueling pumps, tank farms, discharging or dusty areas, etc.).

If field blanks are prepared by the laboratory, the sample bottles will be opened up once on the site, preferably in an area where airborne contaminants can be expected. The field blanks will remain open and secured while one or two groundwater monitoring wells in the area are sampled. This will help to catch any airborne contaminants in the area as well as any contaminants from the truck box or stationary equipment in the same area as the groundwater samples are being prepared. Preservatives are added to field blanks like any groundwater sample, followed by inverting of the sample several times to allow the preservative to mix thoroughly.

Preparing a field blank on site is the preferred method of preparation. Field blanks prepared in the field are prepared with deionized or demineralized water provided by the laboratory. Once on the site, and in area where airborne contaminants could be present, the deionized/demineralized water is poured into the sampling bottles and any required preservatives added. The field blank then remains open while one or two groundwater monitoring wells in the area are sampled.

Once the field blank has been completed, the bottles are closed and placed in the cooler. Field blanks are labeled as FB or FIELD BLANK so that they can be easily identified in a sampling set.

Trip Blank Samples

Trip blank samples are used to measure contamination resulting from the sampling bottle itself or volatile compounds which may be present inside of a laboratory-supplied cooler. Trip blanks are prepared by the laboratory, delivered to the consultant, travel to a site and then travel back to the laboratory. The difference between field blanks and trip blanks are that trip blanks are never opened, they are just left in the cooler throughout the entire sampling program. Trip blanks are never prepared in-house or on a site. Trip blanks are labelled as TB or TRIP BLANK so that they can be easily identified in a sample set.

Closing a Monitoring Well

Prior to moving onto the next monitoring well or leaving a site, field staff ensure all monitoring wells are closed or locked as required. Minor monitoring well repairs (replacement of a well cap, flush-mount cover screws and/or plates, cutting down well casings which have been pushed up) are completed as required. The project manager or client will be contacted immediately for any monitoring wells which are damaged beyond minor repair.

References:

Canadian Council of Ministers of the Environment (CCME). 2011. Protocols Manual for Water Quality Sampling in Canada. PN 1461. ISBN 978-1-896997-7-0.

US EPA. 1996. Low Stress (low flow) purging and sampling procedure for the collection of ground water samples from monitoring wells. US Environmental Protection Agency. Revision 2.

APPENDIX F

Alberta Water Well Information Database Map

Projection

Web Mercator (Auxillary Sphere) Datum WGS 84 Date 1/14/2015 5:04:48 PM

Legend

Groundwater Drilling Report

Baseline Water Well Report

http://groundwater.alberta.ca/WaterWells/d/

Information as depicted is subject to change, therefore the Government of A berta assumes no respons bility for discrepancies at time of use.

© 2009 Government of A berta

Government of Alberta

Reconnaissance Report

View in Imperial Export to Excel

Groundwater Wells

Please click the water Well ID to generate the Water Well Drilling Report.

Well ID	LSD	SEC	TWP	RGE	м	DRILLING COMPANY	DATE COMPLETED	DEPTH (m)	TYPE OF WORK	USE	СНМ	LT	РТ	WELLOWNER	STATIC LEVEL (m)	TEST RATE (L/min)
1131130	NE	29	52	24	4	BIG IRON DRILLING LTD.	2013-10-15	106.68	New Well	Irrigation		16		STRATHCONA COMMUNITY LEAG	1.22	1.41
1131130	NE	29	52	24	4	BIG IRON DRILLING LTD.	2013-07-15	106.68	New Well	Irrigation		16	26	STATHCONA COMMUNITY GARDE	5.24	2.27
1131131	NE	29	52	24	4	BIG IRON DRILLING LTD.	2013-09-30	60.96	New Well	Irrigation		13		STRATHCONA COMMUNITY LEAG	39.44	1.00
1131131	NE	29	52	24	4	BIG IRON DRILLING LTD.	2013-09-30	60.96	New Well	Irrigation		13	26	STRATHCONA COMMUNITY GARD	38.84	2.27
2094596	SE	32	52	24	4	UNKNOWNDRILLINGCOMP11	1926-06-30	89.61	Well Inventory	Unknown		10		NORTH WEST BREWING CO. LTD.	74.37	
2094719	NE	32	52	24	4	UNKNOWNDRILLINGCOMP11	1922-08-03	71.63	Well Inventory	Unknown		26		CANADIAN NATIONAL RAILWAY		1

APPENDIX G

Report Transmission Cover Page

T: +1 (780) 438-5522

F: +1 (780) 434-8586

W: www.exova.com

E: Edmonton@exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1036573	
Report To:	Nichols Environmental (Canada)	ID: 14-214-CRD		Control Number:		
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 30, 2014	
	Edmonton, AB, Canada	Location: Rossdale		Date Reported:	*	
	T5S 1E5	LSD:		Report Number:	,	
Attn:	Tawnya Anderson	P.O.:	D913127A, C#142-14-CRD			
Sampled By:	HB	Acct code:				
Company:	NECL					

Contact & Affiliation	Address	Delivery Commitments
Tawnya Anderson Nichols Environmental (Ca	17331-107 Ave NE Inada) Ltd Edmonton, Alberta T5S 1E5 Phone: (780) 484-3377 Fax: (780) 484-5093 Email:	On [Lot Verification] send (COA) by Email - Merge Reports On [Report Approval] send (COC, Test Report) by Email - Merge Reports On [Report Approval] send (Test Report) by Email - Merge Reports On [Report Approval] send (Test Report) by Email - Merge Reports On [Lot Creation] send (COR) by Email - Merge Reports
Kelly Goetz Nichols Environmental (Ca	17331-107 Ave NE Inada) Ltd Edmonton, Alberta T5S 1E5 Phone: (780) 484-3377 Fax: (780) 484-5093 Email:	On [Lot Approval and Final Test Report Approval] send (Invoice) by Email - Merge Reports On [Lot Approval and Final Test Report Approval] send (Invoice) by Email - Merge Reports

Notes To Clients:

• Report was issued to include visible note to client about the review of phenanthrene concentrations as requested by Tawnya Anderson of Nichols Environmental on November 4, 2014. Previous Report #1964376.

- Report was issued to include addition of Chromatograms analysis on Samples 8-10 requested by Tawnya Anderson of Nichols on Nov 14th/14. Previous report 1968309.
- Phenanthrene hits were reviewed by the analyst and all calculations are correct with no reason to suspect false positives.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Bill To:	City of Edmonton	Project:		Lot ID:	1036573
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name: Phase II ESA		Date Received:	Oct 30, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969157
Attn:	Tawnya Anderson	P.O.:	D913127A, C#142-14-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

		Reference Number	1036573-1	1036573-2	1036573-4	
	r	Sample Date	Oct 27, 2014	Oct 27, 2014	Oct 27, 2014	
		Sample Time	NA	NA	NA	
		•	INA	INA	INA	
	6	Sample Location	A5:14-01 / 1.5 / m	A5:14-02 / 2.0 / m	A5:14-03 / 1.0 / m	
	3	ample Description Matrix	A5:14-01 / 1.5 / III Soil	A5.14-02 / 2.0 / III Soil	A5:14-03 / 1.0 / III Soil	
						Nominal Detectio
Analyte		Units	Results	Results	Results	Limit
Polycyclic Aromatic Hydro	ocarbons - Soil					
Naphthalene	Dry Weight	mg/kg	<0.010	<0.010	<0.010	0.01
Acenaphthylene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Acenaphthene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Fluorene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Phenanthrene	Dry Weight	mg/kg	0.02	0.02	<0.01	0.01
Anthracene	Dry Weight	mg/kg	<0.003	< 0.003	<0.003	0.003
Fluoranthene	Dry Weight	mg/kg	<0.01	<0.01	<0.01	0.01
Pyrene	Dry Weight	mg/kg	<0.01	<0.01	<0.01	0.01
Benzo(a)anthracene	Dry Weight	mg/kg	<0.01	<0.01	<0.01	0.01
Chrysene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Benzo(k)fluoranthene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Benzo(a)pyrene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Benzo(g,h,i)perylene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
IACR_Coarse	Index of Additive Canc Risk	er	<0.001	<0.001	<0.001	0.001
IACR_Fine	Index of Additive Canc Risk	er	<0.001	<0.001	<0.001	0.001
PAH - Soil - Surrogate Ree	covery					
Nitrobenzene-d5	PAH - Surrogate	%	103	123	102	23-130
2-Fluorobiphenyl	PAH - Surrogate	%	102	100	100	30-130
p-Terphenyl-d14	PAH - Surrogate	%	100	106	114	18-137

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Bill To:	City of Edmonton	Project:		Lot ID:	1036573
Report To:	Nichols Environmental (Canada) 17331-107 Ave NE Edmonton, AB, Canada	ID: Name: Location:	14-214-CRD Phase II ESA Rossdale	Control Number: Date Received:	B10694 Oct 30, 2014
Attn	T5S 1E5 Tawnya Anderson	LSD: P.O.:	D913127A, C#142-14-CRD	Date Reported: Report Number:	,
Sampled By: Company:	HB	Acct code:			

	Refe	rence Number Sample Date	1036573-1 Oct 27, 2014	1036573-3 Oct 27, 2014	1036573-5 Oct 27, 2014	
		Sample Time	NA	NA	NA	
		nple Location le Description	A5:14-01 / 1.5 / m	A5:14-02 / 2.5 / m	A5:14-03 / 0.5 / m	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	0.70	2.87	1.87	0.2
Metals Strong Acid Dig	gestion					
Mercury	Strong Acid Extractable	mg/kg	0.03	0.03	0.06	0.01
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2	<0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	5.5	5.5	6.9	0.2
Barium	Strong Acid Extractable	mg/kg	194	198	189	1
Beryllium	Strong Acid Extractable	mg/kg	0.4	0.4	0.6	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.18	0.22	0.13	0.01
Chromium	Strong Acid Extractable	mg/kg	15.4	14.8	18.7	0.5
Cobalt	Strong Acid Extractable	mg/kg	8.2	7.8	10.4	0.1
Copper	Strong Acid Extractable	mg/kg	18.4	17.2	20.6	1
Lead	Strong Acid Extractable	mg/kg	7.7	7.5	9.6	5
Molybdenum	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1
Nickel	Strong Acid Extractable	mg/kg	23.4	21.7	33.4	0.5
Selenium	Strong Acid Extractable	mg/kg	0.3	<0.3	0.4	0.3
Silver	Strong Acid Extractable	mg/kg	<0.1	<0.1	<0.1	0.1
Thallium	Strong Acid Extractable	mg/kg	0.16	0.15	0.20	0.05
Tin	Strong Acid Extractable	mg/kg	1.8	1.7	1.7	1
Uranium	Strong Acid Extractable	mg/kg	0.7	0.6	0.7	0.5
Vanadium	Strong Acid Extractable	mg/kg	24.0	25.8	31.4	0.1
Zinc	Strong Acid Extractable	mg/kg	45	44	51	1
Barite Soil Analysis						
Barium	Extractable	mg/kg	5.3	17.7	6.2	0.05
Water Soluble Parame	ters					
Chromium (VI)	Water Soluble	mg/kg	<0.10	<0.10	<0.10	0.1

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1036573
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 30, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969157
Attn:	Tawnya Anderson	P.O.:	D913127A, C#142-14-CRD	•	
Sampled By:	HB	Acct code:			
Company:	NECL				

		eference Number Sample Date Sample Time Sample Location mple Description Matrix	1036573-6 Oct 27, 2014 NA A5:14-04 / 3.0 / m Soil			
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Polycyclic Aromatic Hydr	ocarbons - Soil					2
Naphthalene	Dry Weight	mg/kg	<0.010			0.01
Acenaphthylene	Dry Weight	mg/kg	<0.05			0.05
Acenaphthene	Dry Weight	mg/kg	<0.05			0.05
Fluorene	Dry Weight	mg/kg	<0.05			0.05
Phenanthrene	Dry Weight	mg/kg	0.02			0.01
Anthracene	Dry Weight	mg/kg	<0.003			0.003
Fluoranthene	Dry Weight	mg/kg	<0.01			0.01
Pyrene	Dry Weight	mg/kg	<0.01			0.01
Benzo(a)anthracene	Dry Weight	mg/kg	<0.01			0.01
Chrysene	Dry Weight	mg/kg	<0.05			0.05
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	<0.05			0.05
Benzo(k)fluoranthene	Dry Weight	mg/kg	<0.05			0.05
Benzo(a)pyrene	Dry Weight	mg/kg	<0.05			0.05
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	<0.05			0.05
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	<0.05			0.05
Benzo(g,h,i)perylene	Dry Weight	mg/kg	<0.05			0.05
IACR_Coarse	Index of Additive Cance Risk	r	<0.001			0.001
IACR_Fine	Index of Additive Cance Risk	r	<0.001			0.001
PAH - Soil - Surrogate Re	covery					
Nitrobenzene-d5	PAH - Surrogate	%	119			23-130
2-Fluorobiphenyl	PAH - Surrogate	%	79			30-130
p-Terphenyl-d14	PAH - Surrogate	%	85			18-137

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1036573
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 30, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969157
Attn:	Tawnya Anderson	P.O.:	D913127A, C#142-14-CRD	-1	
Sampled By:	НВ	Acct code:			
Company:	NECL				

	Sar	rence Number Sample Date Sample Time nple Location le Description	1036573-7 Oct 27, 2014 NA A5:14-04 / 1.0 / m			
		Matrix	Soil			
Analyte		Units	Results	Results	Results	Nominal Detectior Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	6.11			0.2
Metals Strong Acid Dig	gestion					
Mercury	Strong Acid Extractable	mg/kg	0.04			0.01
Antimony	Strong Acid Extractable	mg/kg	<0.2			0.2
Arsenic	Strong Acid Extractable	mg/kg	6.3			0.2
Barium	Strong Acid Extractable	mg/kg	328			1
Beryllium	Strong Acid Extractable	mg/kg	0.8			0.1
Cadmium	Strong Acid Extractable	mg/kg	0.25			0.01
Chromium	Strong Acid Extractable	mg/kg	20.4			0.5
Cobalt	Strong Acid Extractable	mg/kg	11.9			0.1
Copper	Strong Acid Extractable	mg/kg	23.9			1
Lead	Strong Acid Extractable	mg/kg	11.9			5
Molybdenum	Strong Acid Extractable	mg/kg	<1.0			1
Nickel	Strong Acid Extractable	mg/kg	34.8			0.5
Selenium	Strong Acid Extractable	mg/kg	0.4			0.3
Silver	Strong Acid Extractable	mg/kg	<0.1			0.1
Thallium	Strong Acid Extractable	mg/kg	0.25			0.05
Tin	Strong Acid Extractable	mg/kg	1.4			1
Uranium	Strong Acid Extractable	mg/kg	0.6			0.5
Vanadium	Strong Acid Extractable	mg/kg	36.1			0.1
Zinc	Strong Acid Extractable	mg/kg	75			1
Barite Soil Analysis						
Barium	Extractable	mg/kg	31.9			0.05
Water Soluble Parame	ters					
Chromium (VI)	Water Soluble	mg/kg	<0.10			0.1

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1036573
Report To:	Nichols Environmental (Canada) 17331-107 Ave NE			Control Number:	B10694
	Edmonton, AB, Canada	Location:	Rossdale	Date Received: Date Reported: Report Number:	
	T5S 1E5	LSD:			
	Tawnya Anderson	P.O.:	D913127A, C#142-14-CRD		
Sampled By: Company:		Acct code:			

		Reference Number	1036573-8			
		Sample Date	Oct 28, 2014			
		Sample Time	NA			
		Sample Location				
		Sample Description	A7:14-05 / 7.5 / m			
		Matrix	Soil			
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Particle Size Analysis	- Wet Sieve					
Texture			Coarse-Grained			
75 micron sieve	% Retained	% by weight	71.2			0.1

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Analytical Report

Bill To:	City of Edmonton	Project:		Lot ID:	1036573
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 30, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969157
Attn:	Tawnya Anderson	P.O.:	D913127A, C#142-14-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

		Reference Number	1036573-8	1036573-9	1036573-10	
		Sample Date	Oct 28, 2014	Oct 28, 2014	Oct 28, 2014	
		Sample Time	NA	NA	NA	
		Sample Location				
		Sample Description	A7:14-05 / 7.5 / m	A7:14-06 / 8.3 / m	A7:14-07 / 10.5 / m	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mono-Aromatic Hydroca	rbons - Soil					
Extraction Date	Volatiles		31-Oct-14	31-Oct-14	31-Oct-14	
Benzene	Dry Weight	mg/kg	<0.005	<0.005	<0.005	0.005
Toluene	Dry Weight	mg/kg	0.04	<0.02	<0.02	0.02
Ethylbenzene	Dry Weight	mg/kg	<0.010	<0.010	<0.010	0.01
Total Xylenes (m,p,o)	Dry Weight	mg/kg	<0.03	0.03	<0.03	0.03
Styrene	Dry Weight	mg/kg	<0.010	<0.010	<0.010	0.010
Volatile Petroleum Hydro	ocarbons - Soil					
Extraction Date	Volatiles		31-Oct-14	31-Oct-14	31-Oct-14	
F1 C6-C10	Dry Weight	mg/kg	<10	<10	<10	10
F1 -BTEX	Dry Weight	mg/kg	<10	<10	<10	10
Extractable Petroleum H	ydrocarbons - Soil					
Extraction Date	Total Extractables		31-Oct-14	31-Oct-14	31-Oct-14	
F2c C10-C16	Dry Weight	mg/kg	<50	<50	<50	50
F3c C16-C34	Dry Weight	mg/kg	66	<50	<50	50
F4c C34-C50	Dry Weight	mg/kg	<100	<100	<100	100
F4HTGCc C34-C50+	Dry Weight	mg/kg	<100	<100	<100	100
% C50+		%	<5	<5	<5	
Silica Gel Cleanup						
Silica Gel Cleanup			Done	Done	Done	
Soil % Moisture						
Moisture	Soil % Moisture	% by weight	17.90	13.00	17.40	

RhSeunem

Approved by: Randy Neumann, BSc

Vice President

Data have been validated by Analytical Quality Control and Exova's Integrated Data Validation System (IDVS). Generation and distribution of the report, and approval by the digitized signature above, are performed through a secure and controlled automatic process.

 Exova
 T: +1 (780) 438-5522

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E: Edmonton@exova.com

 T6B 3J4, Canada
 W: www.exova.com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1036573
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 30, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969157
Attn:	Tawnya Anderson	P.O.:	D913127A, C#142-14-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

Hot Water Soluble

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Boron	mg/L	0.0212194	-0.01	0.02	yes
Date Acquired:	October 31, 2014				
Client Sample Rep	licates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria Passed QC
Boron	mg/kg	192	202	10	0.10 yes
Date Acquired:	October 31, 2014				
Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC
Boron	mg/kg	1.64	1.07	2.05	yes
Date Acquired:	October 31, 2014				
Boron	mg/kg	0.11	0.09	0.11	yes
Date Acquired:	October 31, 2014				

Metals Strong Acid Digestion

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Mercury	ug/L	-0.0475	-0.07	0.13	yes
Antimony	ug/L	0.039	-0.1	0.2	yes
Arsenic	ug/L	-0.008	-0.2	0.2	yes
Barium	ug/L	0.171	-1	1	yes
Beryllium	ug/L	-0.015	-0.1	0.1	yes
Cadmium	ug/L	-0.01	-0.01	0.01	yes
Chromium	ug/L	0.028	-0.5	0.5	yes
Cobalt	ug/L	0.0063	-0.1	0.1	yes
Copper	ug/L	0.034	-0.6	1.2	yes
Lead	ug/L	0.016	-5.0	5.0	yes
Molybdenum	ug/L	0.021	-1.0	1.0	yes
Nickel	ug/L	0.109	-0.4	0.7	yes
Selenium	ug/L	0.025	-0.3	0.3	yes
Silver	ug/L	0.117	-0.09	0.14	yes
Thallium	ug/L	-0.006	-0.04	0.04	yes
Tin	ug/L	4.123	0.0	7.2	yes
Uranium	ug/L	0.003	-0.5	0.5	yes
Vanadium	ug/L	0.045	-0.1	0.1	yes
Zinc	ug/L	0.267	-1	1	yes
Date Acquired:	October 31, 2014				
Client Sample Rep	licates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria Passed QC
Mercury	mg/kg	0.02	0.03	10	0.03 yes
Date Acquired:	October 31, 2014				
Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC
Mercury	mg/kg	0.30	0.28	0.34	yes
Antimony	mg/kg	40.7	36.1	43.9	yes
Arsenic	mg/kg	41.5	36.7	44.3	yes
Barium	mg/kg	208	185	215	yes

Terms and Conditions: www.exova com/about/terms-and-conditions

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1036573
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	
	T5S 1E5	LSD:			- , -
Attn:	Tawnya Anderson	P.O.:	D913127A, C#142-14-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

Metals Strong Acid Digestion - Continued

Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC
Beryllium	mg/kg	19.1	17.4	22.2	yes
Cadmium	mg/kg	2.04	1.80	2.20	ye
Chromium	mg/kg	102	92.2	105.8	ye
Cobalt	mg/kg	21.8	18.5	22.5	ye
Copper	mg/kg	189	176.3	207.3	ye
Lead	mg/kg	19.2	18.6	21.8	ye
Molybdenum	mg/kg	198	172.6	215.4	ye
Nickel	mg/kg	101	90.6	107.4	ye
Selenium	mg/kg	39.9	36.1	42.9	ye
Silver	mg/kg	20.0	16.69	21.97	ye
Thallium	mg/kg	10.4	9.57	11.23	ye
Tin	mg/kg	197	171.9	201.9	ye
Uranium	mg/kg	94.1	90.3	108.0	уе
Vanadium	mg/kg	19.2	16.3	20.3	ye
Zinc	mg/kg	191	180	220	ye
Date Acquired:	October 31, 2014				
Mercury	mg/kg	0.08	0.05	0.11	уе
Date Acquired:	October 31, 2014				
Mercury	mg/kg	0.36	0.15	0.42	уе
Antimony	mg/kg	1.0	0.3	1.1	уе
Arsenic	mg/kg	78.2	65.9	97.9	уе
Barium	mg/kg	241	213	270	уе
Beryllium	mg/kg	0.7	0.5	0.9	уе
Cadmium	mg/kg	2.00	1.50	2.64	уе
Chromium	mg/kg	37.5	27.4	39.2	уе
Cobalt	mg/kg	13.5	11.3	16.0	уе
Copper	mg/kg	200	162.7	222.9	уе
Lead	mg/kg	122	99.6	135.6	уе
Molybdenum	mg/kg	2.8	2.0	3.8	уе
Nickel	mg/kg	66.1	47.1	73.5	уе
Selenium	mg/kg	0.8	0.3	1.3	уе
Silver	mg/kg	0.9	0.25	1.15	уе
Thallium	mg/kg	0.33	0.26	0.40	уе
Tin	mg/kg	4.6	1.0	5.4	ye
Uranium	mg/kg	1.4	0.9	1.5	ye
Vanadium	mg/kg	43.8	31.5	56.1	ye
Zinc	mg/kg	471	355	550	ye
Date Acquired:	October 31, 2014				

Particle Size Analysis - Wet Sieve

Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Quality Control

Passed QC

yes

yes

yes

yes

yes

yes

yes

yes

yes

Bill To:	City of Edmonton	Project:		Lot ID:	1036573
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 30, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	·
	T5S 1E5	LSD:		•	
Attn:	Tawnya Anderson	P.O.:	D913127A, C#142-14-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

Particle Size Analysis - Wet Sieve **Control Sample** Units Measured Lower Limit **Upper Limit** 75 micron sieve % by weight 29.7 25.4 34.5 Date Acquired: November 03, 2014 **Barite Soil Analysis** Blanks Units Lower Limit **Upper Limit** Measured 0.00319662 -0.00 Barium mg/L 0.01 Date Acquired: October 31, 2014 **Replicate 1 Replicate 2** % RSD Criteria **Client Sample Replicates** Units **Absolute Criteria** Barium 17.2 15.7 10 5.00 mg/kg Date Acquired: October 31, 2014 **Control Sample** Units Measured Lower Limit Upper Limit Barium mg/kg 11.3 8.87 12.71 Date Acquired: October 31, 2014 Barium 0.09 0.09 0.11 mg/kg Date Acquired: October 31, 2014 Water Soluble Parameters Blanks Lower Limit Upper Limit Units Measured Chromium (VI) 0.003 -0.10 0.10 mg/L Date Acquired: October 31, 2014 **Client Sample Replicates** Units **Replicate 1 Replicate 2** % RSD Criteria **Absolute Criteria** Chromium (VI) mg/kg <0.10 <0.10 10 0.01 Date Acquired: October 31, 2014 **Mono-Aromatic Hydrocarbons - Soil** Blanks Units Lower Limit **Upper Limit** Measured Benzene 0 -0.005 0.005 ng 0 -0.06 0.06 Toluene ng

Ethylbenzene	ng	0	-0.030	0.030	yes
Total Xylenes (m,p,o)	ng	0	-0.09	0.09	yes
Styrene	ng	0	-0.030	0.030	yes
Date Acquired: Octo	ober 31, 2014				
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
Benzene	ng	85.00	85	115	yes
Toluene	ng	109.80	85	115	yes
Ethylbenzene	ng	103.80	85	115	yes
Total Xylenes (m,p,o)	ng	89.33	85	115	yes
Styrene	ng	86.40	85	115	yes
Date Acquired: Octo	ober 31, 2014				

Volatile Petroleum Hydrocarbons - Soil

 Exova
 T: +1 (780) 438-5522

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E: Edmonton@exova.com

 T6B 3J4, Canada
 W: www.exova.com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1036573
Report To:			14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 30, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969157
Attn:	Tawnya Anderson	P.O.:	D913127A, C#142-14-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

Volatile Petroleu	m Hydrocarbons - So	oil				
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
F1 C6-C10	ng	0	-10	10		yes
Date Acquired:	October 31, 2014					
Extractable Petro	oleum Hydrocarbons	; -				
Soil						
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
F2c C10-C16	ug/mL	0	-10	10		yes
F3c C16-C34	ug/mL	0	-30	30		yes
F4c C34-C50	ug/mL	0	-20	20		yes
F4HTGCc C34-C	50+ ug/mL	0	-20	20		yes
Date Acquired:	October 31, 2014					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
F2c C10-C16	ug/mL	105.11	85	115		yes
F3c C16-C34	ug/mL	104.55	85	115		yes
F4c C34-C50	ug/mL	99.22	85	115		yes
F4HTGCc C34-C	50+ ug/mL	93.40	85	115		yes
Date Acquired:	October 31, 2014					
Client Sample Rep	licates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
F2c C10-C16	mg/kg	<50	<50	50	10	yes
F3c C16-C34	mg/kg	<50	<50	50	10	yes
F4c C34-C50	mg/kg	<100	<100	50	10	yes
F4HTGCc C34-C	50+ mg/kg	<100	<100	50	10	yes
Date Acquired:	October 31, 2014					

Polycyclic Aromatic Hydrocarbons - Soil

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Naphthalene	ng/mL	0	-0.010	0.010	yes
Acenaphthylene	ng/mL	0	-0.05	0.05	yes
Acenaphthene	ng/mL	0	-0.05	0.05	yes
Fluorene	ng/mL	0	-0.05	0.05	yes
Phenanthrene	ng/mL	0	-0.01	0.01	yes
Anthracene	ng/mL	0	-0.003	0.003	yes
Fluoranthene	ng/mL	0	-0.01	0.01	yes
Pyrene	ng/mL	0	-0.01	0.01	yes
Benzo(a)anthracene	ng/mL	0	-0.01	0.01	yes
Chrysene	ng/mL	0	-0.05	0.05	yes
Benzo(b)fluoranthene	ng/mL	0	-0.05	0.05	yes
Benzo(b+j)fluoranthene	ng/mL	0	-0.05	0.05	yes
Benzo(k)fluoranthene	ng/mL	0	-0.05	0.05	yes
Benzo(a)pyrene	ng/mL	0	-0.05	0.05	yes
Indeno(1,2,3-c,d)pyrene	ng/mL	0	-0.05	0.05	yes

Exova T6B 3J4, Canada

T: +1 (780) 438-5522
 Lxvva
 I: +1 (780) 438-5522

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E: Edmonton@exova.com

 CD 214, Oper data
 With the second secon W: www.exova com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1036573
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 30, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	*
	T5S 1E5	LSD:		Report Number:	,
Attn:	Tawnya Anderson	P.O.:	D913127A, C#142-14-CRD	-	
Sampled By:	HB	Acct code:			
Company:	NECL				

Polycyclic Aromatic Hydrocarbons - Soil -

ontinued ^{Blanks}	Units	Measured	Lower Limit	Upper Limit	Passed QC
Dibenzo(a,h)anthracene	ng/mL	0	-0.05	0.05	yes
Benzo(g,h,i)perylene	ng/mL	0	-0.05	0.05	yes
Date Acquired: Octobe	r 31, 2014				
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
Naphthalene	ng/mL	90.20	80	120	yes
Acenaphthylene	ng/mL	88.00	80	120	yes
Acenaphthene	ng/mL	90.20	80	120	yes
Fluorene	ng/mL	93.00	80	120	yes
Phenanthrene	ng/mL	88.40	80	120	yes
Anthracene	ng/mL	89.60	80	120	yes
Fluoranthene	ng/mL	93.40	80	120	yes
Pyrene	ng/mL	94.60	80	120	yes
Benzo(a)anthracene	ng/mL	89.80	80	120	yes
Chrysene	ng/mL	88.40	80	120	yes
Benzo(b)fluoranthene	ng/mL	88.80	80	120	yes
Benzo(k)fluoranthene	ng/mL	94.80	80	120	yes
Benzo(a)pyrene	ng/mL	95.20	80	120	yes
Indeno(1,2,3-c,d)pyrene	ng/mL	97.00	80	120	yes
Dibenzo(a,h)anthracene	ng/mL	93.00	80	120	yes
Benzo(g,h,i)perylene	ng/mL	88.80	80	120	yes

PAH - Soil - Surrogate Recovery

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Nitrobenzene-d5	%	124.72	23	130	yes
2-Fluorobiphenyl	%	88.88	30	130	yes
p-Terphenyl-d14	%	89.13	18	137	yes
Date Acquired:	October 31, 2014				

 Exova
 T: +1 (780) 438-5522

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E: Edmonton@exova.com

 T6B 3J4, Canada
 W: www.exova com

Methodology and Notes

	City of Edmonton Nichols Environmental (Canada) 17331-107 Ave NE	Project: ID: Name:	14-214-CRD Phase II ESA	Control Number:	
Attn: Sampled By:	Edmonton, AB, Canada T5S 1E5 Tawnya Anderson	Location: LSD: P.O.: Acct code:	D913127A, C#142-14-CRD	Date Received: Date Reported: Report Number:	Nov 17, 2014
Company:					

Method of Analysis

Method Name	Reference	Method Date Analysis Location Started
1:5 Water Soluble Extraction	McKeague	* Soluble Salts in Extracts of 1:5 31-Oct-14 Exova Edmonton Soil:Water Mixtures, 3.23
Barium (Extractable) in soil (0.1 M CaCl2)	Ab Env	Analytical Method for Extractable 31-Oct-14 Exova Edmonton Barium, 6.6.2
Boron in general soil	McKeague	* Hot Water Soluble Boron - 31-Oct-14 Exova Edmonton Azomethine-H Method, 4.61
BTEX-CCME - Soil	CCME	 * Reference Method for Canada-Wide 31-Oct-14 Exova Calgary Standard for PHC in Soil, CWS PHCS TIER 1
BTEX-CCME - Soil	US EPA	 Volatile Organic Compounds in Various 31-Oct-14 Exova Calgary Sample Matrices Using Equilibrium Headspace Analysis/Gas Chromatography Mass Spectrometry, 5021/8260
Mercury (Hot Block) in Soil	US EPA	 * Determination of Hg in Sediment by 31-Oct-14 Exova Edmonton Cold Vapor Atomic Absorption Spec, 245.5
Metals ICP-MS (Hot Block) in soil	SW-846	 * Acid Digestion of Sediments, Sludges, 31-Oct-14 Exova Edmonton and Soils, EPA 3050B
PAH - Soil	AESRD	Index of Additive Cancer Risk (IACR), 31-Oct-14 Exova Calgary PAHs
PAH - Soil	US EPA	 * Semivolatile Organic Compounds by 31-Oct-14 Exova Calgary Gas Chromatography/Mass Spectrometry, 8270
Particle Size by Wet Sieve	ASTM	 * Standard Test Method for Materials 30-Oct-14 Exova Edmonton Finer than 75-um (No. 200) Sieve in Mineral Aggregates by Washing, C 117-04
TEH-CCME-Soil (Shake)	CCME	 * Reference Method for Canada-Wide 31-Oct-14 Exova Calgary Standard for PHC in Soil, CWS PHCS TIER 1
		* Reference Method Modified

* Reference Method Modified

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Methodology and Notes

Report To:	City of Edmonton Nichols Environmental (Canada) 17331-107 Ave NE Edmonton, AB, Canada T5S 1E5	Name: Location: LSD:	14-214-CRD Phase II ESA Rossdale	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Oct 30, 2014 Nov 17, 2014
Attn: Sampled By: Company:	Tawnya Anderson HB NECL	P.O.: Acct code:	D913127A, C#142-14-CRD		

References

Ab Env	Alberta Environment, Soil Quality Guidelines for Barite
AESRD	Alberta Tier 1 Soil and Groundwater Remediation Guidelines
APHA	Standard Methods for the Examination of Water and Wastewater
Carter	Soil Sampling and Methods of Analysis.
CCME	Canadian Council of Ministers of the Environment
McKeague	Manual on Soil Sampling and Methods of Analysis
SW-846	Test Methods for Evaluating Solid Waste
US EPA	US Environmental Protection Agency Test Methods

Comments:

• Report was issued to include visible note to client about the review of phenanthrene concentrations as requested by Tawnya Anderson of Nichols Environmental on November 4, 2014. Previous Report #1964376.

• Report was issued to include addition of Chromatograms analysis on Samples 8-10 requested by Tawnya Anderson of Nichols on Nov 14th/14. Previous report 1968309.

• Phenanthrene hits were reviewed by the analyst and all calculations are correct with no reason to suspect false positives.

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Analytical Report

Report To:	17331-107 Ave NE Edmonton, AB, Canada T5S 1E5 Tawnya Anderson HB	Project: ID: Name: Location: LSD: P.O.: Acct code:	14-214-CRD Phase II ESA Rossdale D913127A, C#142-14-CRD	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Oct 30, 2014 Nov 17, 2014
------------	--	--	--	--	------------------------------

Petroleum Hydrocarbons in Soil

Batch Notes

- 1. The method used complies with the Reference Method for the Canada Wide Standards for Petroleum Hydrocarbons in Soil Tier 1, April 2001, including Addendum 1, and is accredited for use in Exova.
- 2. Modifications of the method: See Notes and Methodology for nonconformances (if applicable).
- 3. Qualifications on results: See Notes and Methodology for nonconformances (if applicable).
- 4. Silica gel treatment is performed for fractions F2, F3, F4.
- 5. F1-BTEX: BTEX has been subtracted from the F1 fraction.
- If analyzed, naphthalene has been subtracted from fraction F2 and selected PAHs have been subtracted from fraction F3.
- 7. F4HTGC is reported when more than 5% of the total carbon envelope elutes past C_{50} .
- 8. Exova does not routinely report Gravimetric Heavy Hydrocarbons (F4G or F4G-sg), F4HTGC through extended range high temperature GC is reported instead.
- 9. When both F4(C₃₄-C₅₀) and F4HTGC are reported, F4HTGC is the final F4 that is to be used for interpreting the CWS.
- 10. Quality criteria met for the batch: Data is reported in Quality Control Section of report (if requested).
 -nC₆ and nC₁₀ response factors (RF) are within 30% of RF for toluene
 -nC₁₀, nC₁₆ and nC₃₄ RFs are within 10% of each other
 -nC₅₀ RF is within 30% of the average RF for nC₁₀+nC₁₆+nC₃₄
 -linearity is within 15% for each of the calibrated carbon ranges
- 11. Batch data for analytical quality control are available on request.
- 12. Extraction and analysis holding times were met: See Notes and Methodology for nonconformances (if applicable).

RhSeunem

Approved by:

Randy Neumann, BSc Vice President

Data have been validated by Analytical Quality Control and Exova's Integrated Data Validation System (IDVS).

 Exova
 T +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F +1 (403) 291-2021

 Caigary, Alberta
 E: NWL-Caigary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036573
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10694
		Location:	Rossdale	Date Received:	Oct 30, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969157
	T5S 1E5		and the second states of the second	Construction of the second sec	
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:	NECL				

C8-C22

Crude Oils

C3-C60+

Diesel

Varsol

C8-C12

 Exova
 T:+1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F:+1 (403) 291-2021

 Calgary, Alberta
 E: NWL-Calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Hydrocarbon Chromatogram

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036573
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10694
		Location:	Rossdale	Date Received:	Oct 30, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969157
	T5S 1E5			CARD CERT CARD STORE	
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:	NECL				

Product Carbon Number Ranges

C7-C16

C8-C22

Kerosene

Diesel

Time (min .)

C4-C12

C8-C12

Gasoline

Varsol

30

30

C20-C40

C3-C60+

Time (min.)

Lubricating Oils

Crude Oils

 Exova
 T:+1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F:+1 (403) 291-2021

 Calgary, Alberta
 E: NWL-Calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Hydrocarbon Chromatogram

Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036573
Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10694
	Location:	Rossdale	Date Received:	Oct 30, 2014
17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969157
T5S 1E5		and the second first of the second of	Contraction of the second second second	
Tawnya Anderson				
HB				
NECL				
	Nichols Environmental (Canada) 17331-107 Ave NE Edmonton, AB, Canada T5S 1E5 Tawnya Anderson HB	Nichols Environmental (Canada) Name: Location: 17331-107 Ave NE LSD: Edmonton, AB, Canada P.O.: T5S 1E5 Tawnya Anderson HB	Nichols Environmental (Canada) Name: Phase II ESA Location: Rossdale 17331-107 Ave NE LSD: Edmonton, AB, Canada P.O.: D913127A, C#(required) T5S 1E5 Tawnya Anderson HB	Nichols Environmental (Canada)Name: Location:Phase II ESA RossdaleControl Number: Date Received:17331-107 Ave NELSD:Date Received: Date Reported:Edmonton, AB, CanadaP.O.:D913127A, C#(required)Report Number: TSS 1E5Tawnya AndersonHB

C8-C22

Crude Oils

C3-C60+

Diesel

Varsol

C8-C12

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Report Transmission Cover Page

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	
	T5S 1E5	LSD:		Report Number:	
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	rteport rtumber.	1000102
Sampled By:	HB	Acct code:			
Company:	NECL				

Contact & Affiliation	Address	Delivery Commitments
Tawnya Anderson Nichols Environmental (Ca	17331-107 Ave NE Inada) Ltd Edmonton, Alberta T5S 1E5 Phone: (780) 484-3377 Fax: (780) 484-5093 Email:	On [Lot Verification] send (COA) by Email - Merge Reports On [Report Approval] send (Test Report) by Email - Single Report On [Report Approval] send (Test Report) by Email - Merge Reports On [Report Approval] send (Test Report) by Email - Single Report On [Report Approval] send (Test Report, COC) by Email - Merge Reports On [Lot Creation] send (COR) by Email - Single Report
Kelly Goetz Nichols Environmental (Ca	17331-107 Ave NE Inada) Ltd Edmonton, Alberta T5S 1E5 Phone: (780) 484-3377 Fax: (780) 484-5093 Email:	On [Lot Approval and Final Test Report Approval] send (Invoice) by Email - Merge Reports On [Lot Approval and Final Test Report Approval] send (Invoice) by Email - Merge Reports

Notes To Clients:

• Report was issued to include addition of Chromatogram analysis on samples 1-4,9,11,15,17,20,21,24,26-28,30-31 requested by Tawnya Anderson of Nichols on Nov 14th/14. Previous report 1964875.

>130 - The surrogate recovery for PAH analysis is outside the range 23-130 % on samples #22,23,25 due to other sample material interfering with this surrogate.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

	City of Edmonton Nichols Environmental (Canada)	Project: ID [.]	14-214-CRD		1036919
	17331-107 Ave NE Edmonton, AB, Canada	Name: Location:	Phase II ESA Rossdale	Control Number: Date Received: Date Reported:	Oct 31, 2014
Attn: Sampled By:	T5S 1E5 Tawnya Anderson HB	LSD: P.O.: Acct code:	14-214-CRD	Report Number:	
Company:	NECL				

		Reference Number	1036919-1	1036919-2	1036919-3	
		Sample Date	Oct 28, 2014	Oct 28, 2014	Oct 28, 2014	
		Sample Time	NA	NA	NA	
		Sample Location	INA	NA NA	INA	
		Sample Description	A7 / 14-05 / 3.8 / m	A7 / 14-06 / 9.8 / m	A7 / 14-07 / 2.3 / m	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detectio Limit
Mono-Aromatic Hydroca	rbons - Soil					Linnit
Extraction Date	Volatiles		3-Nov-14	3-Nov-14	3-Nov-14	
Benzene	Dry Weight	mg/kg	< 0.005	< 0.005	<0.005	0.005
Toluene	Dry Weight	mg/kg	<0.02	<0.02	<0.02	0.02
Ethylbenzene	Dry Weight	mg/kg	<0.010	<0.010	<0.010	0.01
Total Xylenes (m,p,o)	Dry Weight	mg/kg	<0.03	0.03	<0.03	0.03
Styrene	Dry Weight	mg/kg	<0.010	<0.010	<0.010	0.010
Volatile Petroleum Hydro	ocarbons - Soil					
Extraction Date	Volatiles		3-Nov-14	3-Nov-14	3-Nov-14	
F1 C6-C10	Dry Weight	mg/kg	<10	<10	<10	10
F1 -BTEX	Dry Weight	mg/kg	<10	<10	<10	10
Extractable Petroleum H	ydrocarbons - Soil					
Extraction Date	Total Extractables		3-Nov-14	3-Nov-14	3-Nov-14	
F2c C10-C16	Dry Weight	mg/kg	<50	<50	<50	50
F3c C16-C34	Dry Weight	mg/kg	<50	<50	<50	50
F4c C34-C50	Dry Weight	mg/kg	<100	<100	<100	100
F4HTGCc C34-C50+	Dry Weight	mg/kg	<100	<100	<100	100
% C50+		%	<5	<5	<5	
Silica Gel Cleanup						
Silica Gel Cleanup			Done	Done	Done	
Soil % Moisture						
Moisture	Soil % Moisture	% by weight	15.80	15.60	23.20	

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969162
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

		Reference Number Sample Date Sample Time	1036919-4 Oct 30, 2014 NA	1036919-9 Oct 30, 2014 NA	1036919-11 Oct 30, 2014 NA	
		Sample Location Sample Description Matrix	A3 / 14-08 / 2.0 / m Soil	A3 / 14-09 / 1.0 / m Soil	A3 / 14-09 / 8.3 / m Soil	
Analyte		Units	Results	Results	Results	Nominal Detectior Limit
Mono-Aromatic Hydroca	rbons - Soil					2
Extraction Date	Volatiles		3-Nov-14	3-Nov-14	3-Nov-14	
Benzene	Dry Weight	mg/kg	<0.005	<0.005	<0.005	0.005
Toluene	Dry Weight	mg/kg	<0.02	<0.02	<0.02	0.02
Ethylbenzene	Dry Weight	mg/kg	<0.010	<0.010	<0.010	0.01
Total Xylenes (m,p,o)	Dry Weight	mg/kg	<0.03	<0.03	<0.03	0.03
Styrene	Dry Weight	mg/kg	<0.010	<0.010	<0.010	0.010
Volatile Petroleum Hydro	ocarbons - Soil					
Extraction Date	Volatiles		3-Nov-14	3-Nov-14	3-Nov-14	
F1 C6-C10	Dry Weight	mg/kg	<10	<10	<10	10
F1 -BTEX	Dry Weight	mg/kg	<10	<10	<10	10
Extractable Petroleum H	ydrocarbons - Soil					
Extraction Date	Total Extractables		3-Nov-14	3-Nov-14	3-Nov-14	
F2c C10-C16	Dry Weight	mg/kg	<50	<50	<50	50
F3c C16-C34	Dry Weight	mg/kg	<50	281	<50	50
F4c C34-C50	Dry Weight	mg/kg	<100	275	<100	100
F4HTGCc C34-C50+	Dry Weight	mg/kg	<100	613	<100	100
% C50+		%	<5	37.7	<5	
Silica Gel Cleanup						
Silica Gel Cleanup			Done	Done	Done	
Soil % Moisture						
Moisture	Soil % Moisture	% by weight	15.00	8.91	10.10	

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969162
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	·	
Sampled By:	HB	Acct code:			
Company:	NECL				

	Refe	rence Number Sample Date	1036919-5 Oct 30, 2014	1036919-6 Oct 30, 2014	1036919-7 Oct 30, 2014	
	So.	Sample Time	NA	NA	NA	
		le Description Matrix	A3 / 14-08 / 0.5 / m Soil	A3 / 14-08 / 1.0 / m Soil	A3 / 14-08 / 2.5 / m Soil	
Analyte		Units	Results	Results	Results	Nominal Detection
Hot Water Soluble						Limit
Boron	Hot Water Soluble	mg/kg	0.91	1.14	0.42	0.2
Metals Strong Acid Di	aestion				•••	
Mercury	Strong Acid Extractable	mg/kg	0.06	0.02	0.03	0.01
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2	<0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	4.0	6.5	5.8	0.2
Barium	Strong Acid Extractable	mg/kg	221	168	227	1
Beryllium	Strong Acid Extractable	mg/kg	0.8	0.6	0.5	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.18	0.17	0.31	0.01
Chromium	Strong Acid Extractable	mg/kg	15.5	23.1	17.3	0.5
Cobalt	Strong Acid Extractable	mg/kg	7.6	7.6	9.0	0.1
Copper	Strong Acid Extractable	mg/kg	19.0	15.5	15.6	1
Lead	Strong Acid Extractable	mg/kg	6.3	12.3	7.9	5
Molybdenum	Strong Acid Extractable	mg/kg	1.2	1.2	<1.0	1
Nickel	Strong Acid Extractable	mg/kg	29.5	26.5	23.7	0.5
Selenium	Strong Acid Extractable	mg/kg	0.9	0.5	0.4	0.3
Silver	Strong Acid Extractable	mg/kg	0.1	<0.1	<0.1	0.1
Thallium	Strong Acid Extractable	mg/kg	0.17	0.12	0.17	0.05
Tin	Strong Acid Extractable	mg/kg	2.0	2.0	1.5	1
Uranium	Strong Acid Extractable	mg/kg	1.4	1.2	0.9	0.5
Vanadium	Strong Acid Extractable	mg/kg	26.3	29.0	27.0	0.1
Zinc	Strong Acid Extractable	mg/kg	43	42	60	1
Barite Soil Analysis						
Barium	Extractable	mg/kg	21.6	18.8	23.5	0.05
Water Soluble Parame	eters					
Chromium (VI)	Water Soluble	mg/kg	<0.10	<0.10	<0.10	0.1

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969162
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	·	
Sampled By:	HB	Acct code:			
Company:	NECL				

	F	Reference Number Sample Date Sample Time	1036919-5 Oct 30, 2014 NA	1036919-7 Oct 30, 2014 NA	1036919-8 Oct 30, 2014 NA	
	Sa	Sample Location ample Description Matrix	A3 / 14-08 / 0.5 / m Soil	A3 / 14-08 / 2.5 / m Soil	A3 / 14-09 / 0.5 / m Soil	
Analyte		Units	Results	Results	Results	Nominal Detectio Limit
Polycyclic Aromatic Hydr	ocarbons - Soil					Linin
Naphthalene	Dry Weight	mg/kg	0.062	0.017	0.011	0.01
Acenaphthylene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Acenaphthene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Fluorene	Dry Weight	mg/kg	0.05	<0.05	<0.05	0.05
Phenanthrene	Dry Weight	mg/kg	0.24	0.04	0.14	0.01
Anthracene	Dry Weight	mg/kg	0.082	< 0.003	0.041	0.003
Fluoranthene	Dry Weight	mg/kg	0.17	0.01	0.17	0.01
Pyrene	Dry Weight	mg/kg	0.14	0.02	0.19	0.01
Benzo(a)anthracene	Dry Weight	mg/kg	0.08	<0.01	0.13	0.01
Chrysene	Dry Weight	mg/kg	0.07	<0.05	0.17	0.05
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	0.07	<0.05	0.13	0.05
Benzo(k)fluoranthene	Dry Weight	mg/kg	<0.05	<0.05	0.06	0.05
Benzo(a)pyrene	Dry Weight	mg/kg	0.06	<0.05	0.12	0.05
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	<0.05	<0.05	0.06	0.05
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Benzo(g,h,i)perylene	Dry Weight	mg/kg	<0.05	<0.05	0.08	0.05
IACR_Coarse	Index of Additive Canc Risk	er	0.097	<0.001	0.376	0.001
IACR_Fine	Index of Additive Canc Risk	er	0.187	<0.001	0.727	0.001
PAH - Soil - Surrogate Re	covery					
Nitrobenzene-d5	PAH - Surrogate	%	76	104	68	23-130
2-Fluorobiphenyl	PAH - Surrogate	%	123	103	106	30-130
p-Terphenyl-d14	PAH - Surrogate	%	102	98	88	18-137

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969162
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	·	
Sampled By:	HB	Acct code:			
Company:	NECL				

		rence Number Sample Date Sample Time mple Location	1036919-8 Oct 30, 2014 NA	1036919-10 Oct 30, 2014 NA	1036919-13 Oct 30, 2014 NA	
		•	A3 / 14-09 / 0.5 / m	A3 / 14-09 / 3.1 / m	A3 / 14-10 / 1.0 / m	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detectior Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	1.22	8.83	1.91	0.2
Metals Strong Acid Dig	gestion					
Mercury	Strong Acid Extractable	mg/kg	0.05	0.03	0.09	0.01
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2	0.3	0.2
Arsenic	Strong Acid Extractable	mg/kg	3.1	5.1	5.2	0.2
Barium	Strong Acid Extractable	mg/kg	146	209	368	1
Beryllium	Strong Acid Extractable	mg/kg	0.4	0.7	0.6	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.39	0.22	0.43	0.01
Chromium	Strong Acid Extractable	mg/kg	10.8	16.6	14.3	0.5
Cobalt	Strong Acid Extractable	mg/kg	5.3	9.5	7.3	0.1
Copper	Strong Acid Extractable	mg/kg	21.8	34.4	26.1	1
Lead	Strong Acid Extractable	mg/kg	160	29.6	87.5	5
Molybdenum	Strong Acid Extractable	mg/kg	<1.0	<1.0	<1.0	1
Nickel	Strong Acid Extractable	mg/kg	16.0	24.4	22.3	0.5
Selenium	Strong Acid Extractable	mg/kg	<0.3	0.4	0.4	0.3
Silver	Strong Acid Extractable	mg/kg	<0.1	<0.1	<0.1	0.1
Thallium	Strong Acid Extractable	mg/kg	0.11	0.20	0.17	0.05
Tin	Strong Acid Extractable	mg/kg	2.1	1.3	1.9	1
Uranium	Strong Acid Extractable	mg/kg	0.6	0.9	1.1	0.5
Vanadium	Strong Acid Extractable	mg/kg	18.9	30.5	24.6	0.1
Zinc	Strong Acid Extractable	mg/kg	57	62	106	1
Barite Soil Analysis						
Barium	Extractable	mg/kg	37.5	17.2	34.8	0.05
Water Soluble Paramet	ters					
Chromium (VI)	Water Soluble	mg/kg	<0.10	<0.10	<0.10	0.1

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	,
	T5S 1E5	LSD:		Report Number:	
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

	F	Reference Number Sample Date Sample Time	1036919-9 Oct 30, 2014 NA	1036919-10 Oct 30, 2014 NA	1036919-12 Oct 30, 2014 NA	
	C.	Sample Location		NA A3 / 14-09 / 3.1 / m	A3 / 14-09 / 9.0 / m	
	50	ample Description Matrix	A3 / 14-09 / 1.0 / m Soil	A3 / 14-09 / 3.1 / m Soil	A3 / 14-09 / 9.0 / m Soil	
Analyte		Units	Results	Results	Results	Nominal Detectio Limit
Polycyclic Aromatic Hydr	ocarbons - Soil					Limit
Naphthalene	Dry Weight	mg/kg	0.042	<0.010	<0.010	0.01
Acenaphthylene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Acenaphthene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Fluorene	Dry Weight	mg/kg	<0.05	< 0.05	<0.05	0.05
Phenanthrene	Dry Weight	mg/kg	0.23	0.01	0.01	0.01
Anthracene	Dry Weight	mg/kg	0.066	0.003	<0.003	0.003
Fluoranthene	Dry Weight	mg/kg	0.30	0.02	0.01	0.01
Pyrene	Dry Weight	mg/kg	0.29	0.02	0.02	0.01
Benzo(a)anthracene	Dry Weight	mg/kg	0.18	<0.01	<0.01	0.01
Chrysene	Dry Weight	mg/kg	0.19	<0.05	<0.05	0.05
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	0.21	<0.05	<0.05	0.05
Benzo(k)fluoranthene	Dry Weight	mg/kg	0.08	<0.05	<0.05	0.05
Benzo(a)pyrene	Dry Weight	mg/kg	0.15	<0.05	<0.05	0.05
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	0.11	<0.05	<0.05	0.05
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Benzo(g,h,i)perylene	Dry Weight	mg/kg	0.10	<0.05	<0.05	0.05
IACR_Coarse	Index of Additive Canc Risk	er	0.526	<0.001	<0.001	0.001
IACR_Fine	Index of Additive Canc Risk	er	1.02	<0.001	<0.001	0.001
PAH - Soil - Surrogate Re	covery					
Nitrobenzene-d5	PAH - Surrogate	%	68	118	119	23-130
2-Fluorobiphenyl	PAH - Surrogate	%	110	111	111	30-130
p-Terphenyl-d14	PAH - Surrogate	%	94	107	96	18-137

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	,
	T5S 1E5	LSD:		Report Number:	
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

	F	Reference Number Sample Date Sample Time	1036919-13 Oct 30, 2014 NA	1036919-14 Oct 30, 2014 NA	1036919-16 Oct 30, 2014 NA	
		Sample Location				
	Sa	ample Description	A3 / 14-10 / 1.0 / m	A3 / 14-10 / 1.5 / m	A3 / 14-10 / 6.1 / m	
Analysia		Matrix Units	Soil Results	Soil Results	Soil Results	Nominal Detection
Analyte		Units	Results	Results	Results	Limit
Polycyclic Aromatic Hydr						
Naphthalene	Dry Weight	mg/kg	0.048	0.057	0.010	0.01
Acenaphthylene	Dry Weight	mg/kg	0.15	<0.05	<0.05	0.05
Acenaphthene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Fluorene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Phenanthrene	Dry Weight	mg/kg	0.28	0.09	0.03	0.01
Anthracene	Dry Weight	mg/kg	0.292	0.026	<0.003	0.003
Fluoranthene	Dry Weight	mg/kg	0.47	0.10	<0.01	0.01
Pyrene	Dry Weight	mg/kg	0.53	0.09	0.01	0.01
Benzo(a)anthracene	Dry Weight	mg/kg	0.28	0.04	<0.01	0.01
Chrysene	Dry Weight	mg/kg	0.26	0.06	<0.05	0.05
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	0.32	0.09	<0.05	0.05
Benzo(k)fluoranthene	Dry Weight	mg/kg	0.18	<0.05	<0.05	0.05
Benzo(a)pyrene	Dry Weight	mg/kg	0.25	0.07	<0.05	0.05
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	0.21	<0.05	<0.05	0.05
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	0.05	<0.05	<0.05	0.05
Benzo(g,h,i)perylene	Dry Weight	mg/kg	0.16	<0.05	<0.05	0.05
IACR_Coarse	Index of Additive Canc Risk	er	1.02	0.101	<0.001	0.001
IACR_Fine	Index of Additive Canc Risk	er	1.97	0.194	<0.001	0.001
PAH - Soil - Surrogate Re	covery					
Nitrobenzene-d5	PAH - Surrogate	%	127	113	114	23-130
2-Fluorobiphenyl	PAH - Surrogate	%	107	111	105	30-130
p-Terphenyl-d14	PAH - Surrogate	%	83	81	98	18-137

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969162
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	·	
Sampled By:	HB	Acct code:			
Company:	NECL				

	Refe	rence Number Sample Date Sample Time	1036919-14 Oct 30, 2014 NA	1036919-18 Oct 30, 2014 NA	1036919-19 Oct 30, 2014 NA	
	Sa	mple Location			101	
	Samp	le Description	A3 / 14-10 / 1.5 / m	A3 / 14-11 / 1.0 / m	A3 / 14-11 / 2.0 / m	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detectior Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	6.11	2.98	2.61	0.2
Metals Strong Acid Di	gestion					
Mercury	Strong Acid Extractable	mg/kg	0.04	0.23	0.03	0.01
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2	<0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	7.1	6.4	5.4	0.2
Barium	Strong Acid Extractable	mg/kg	261	284	255	1
Beryllium	Strong Acid Extractable	mg/kg	0.6	0.6	0.6	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.25	0.25	0.21	0.01
Chromium	Strong Acid Extractable	mg/kg	14.9	19.0	13.4	0.5
Cobalt	Strong Acid Extractable	mg/kg	9.0	10.1	7.8	0.1
Copper	Strong Acid Extractable	mg/kg	16.7	23.0	16.6	1
Lead	Strong Acid Extractable	mg/kg	13.2	25.4	16.1	5
Molybdenum	Strong Acid Extractable	mg/kg	<1.0	2.2	<1.0	1
Nickel	Strong Acid Extractable	mg/kg	24.5	24.3	21.2	0.5
Selenium	Strong Acid Extractable	mg/kg	0.3	0.4	<0.3	0.3
Silver	Strong Acid Extractable	mg/kg	<0.1	<0.1	<0.1	0.1
Thallium	Strong Acid Extractable	mg/kg	0.17	0.20	0.16	0.05
Tin	Strong Acid Extractable	mg/kg	1.5	1.8	1.7	1
Uranium	Strong Acid Extractable	mg/kg	1.0	1.1	1.0	0.5
Vanadium	Strong Acid Extractable	mg/kg	26.5	26.5	23.3	0.1
Zinc	Strong Acid Extractable	mg/kg	61	65	49	1
Barite Soil Analysis						
Barium	Extractable	mg/kg	53.1	29.4	26.4	0.05
Water Soluble Parame	eters					
Chromium (VI)	Water Soluble	mg/kg	<0.10	<0.10	<0.10	0.1

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To: City of Edmonton Project:	Lot ID: 1036919	
Report To: Nichols Environmental (Canada) ID: 14-214-CRD	Control Number: B10681	
17331-107 Ave NE Name: Phase II ESA	Date Received: Oct 31, 2014	
Edmonton, AB, Canada Location: Rossdale	Date Reported: Nov 17, 2014	
T5S 1E5 LSD:	Report Number: 1969162	
Attn: Tawnya Anderson P.O.: 14-214-CRD		
Sampled By: HB Acct code:		
Company: NECL		

		Reference Number Sample Date Sample Time	1036919-15 Oct 30, 2014 NA	1036919-17 Oct 30, 2014 NA	1036919-20 Oct 30, 2014 NA	
		Sample Location Sample Description Matrix	A3 / 14-10 / 2.0 / m Soil	A3 / 14-11 / 0.5 / m Soil	A3 / 14-11 / 4.6 / m Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mono-Aromatic Hydroca	arbons - Soil					Linit
Extraction Date	Volatiles		3-Nov-14	3-Nov-14	3-Nov-14	
Benzene	Dry Weight	mg/kg	<0.005	<0.005	<0.005	0.005
Toluene	Dry Weight	mg/kg	<0.02	<0.02	<0.02	0.02
Ethylbenzene	Dry Weight	mg/kg	<0.010	<0.010	<0.010	0.01
Total Xylenes (m,p,o)	Dry Weight	mg/kg	<0.03	<0.03	<0.03	0.03
Styrene	Dry Weight	mg/kg	<0.010	<0.010	<0.010	0.010
Volatile Petroleum Hydro	ocarbons - Soil					
Extraction Date	Volatiles		3-Nov-14	3-Nov-14	3-Nov-14	
F1 C6-C10	Dry Weight	mg/kg	<10	<10	<10	10
F1 -BTEX	Dry Weight	mg/kg	<10	<10	<10	10
Extractable Petroleum H	lydrocarbons - Soil					
Extraction Date	Total Extractables		3-Nov-14	3-Nov-14	3-Nov-14	
F2c C10-C16	Dry Weight	mg/kg	<50	<50	<50	50
F3c C16-C34	Dry Weight	mg/kg	<50	1890	<50	50
F4c C34-C50	Dry Weight	mg/kg	<100	1230	<100	100
F4HTGCc C34-C50+	Dry Weight	mg/kg	<100	1940	<100	100
% C50+		%	13.0	18.6	<5	
Silica Gel Cleanup						
Silica Gel Cleanup			Done	Done	Done	
Soil % Moisture						
Moisture	Soil % Moisture	% by weight	20.40	12.80	16.60	

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)		14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969162
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

	F	Reference Number Sample Date	1036919-18 Oct 30, 2014	1036919-19 Oct 30, 2014	1036919-21 Oct 30, 2014	
		Sample Time	NA	NA	NA	
	0	Sample Location				
	58	ample Description	A3 / 14-11 / 1.0 / m	A3 / 14-11 / 2.0 / m	A3 / 14-11 / 9.8 / m	
Analyte		Matrix Units	Soil Results	Soil Results	Soil Results	Nominal Detect
Polycyclic Aromatic Hydr	acarbana Sail	Units	Results	Results	Results	Limit
Naphthalene	Dry Weight	mg/kg	0.026	0.022	<0.010	0.01
Acenaphthylene	Dry Weight	mg/kg	<0.020	<0.05	<0.05	0.01
Acenaphthene	Dry Weight	mg/kg	<0.05	0.05	<0.05	0.05
Fluorene	Dry Weight	mg/kg	<0.05	0.06	<0.05	0.05
Phenanthrene	Dry Weight	mg/kg	0.41	0.51	0.02	0.00
Anthracene	Dry Weight	mg/kg	0.113	0.165	0.005	0.003
Fluoranthene	Dry Weight	mg/kg	0.40	0.54	0.03	0.01
Pyrene	Dry Weight	mg/kg	0.49	0.49	0.04	0.01
Benzo(a)anthracene	Dry Weight	mg/kg	0.28	0.33	0.01	0.01
Chrysene	Dry Weight	mg/kg	0.19	0.26	< 0.05	0.05
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	0.26	0.30	< 0.05	0.05
Benzo(k)fluoranthene	Dry Weight	mg/kg	0.13	0.18	<0.05	0.05
Benzo(a)pyrene	Dry Weight	mg/kg	0.30	0.33	<0.05	0.05
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	0.11	0.13	<0.05	0.05
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Benzo(g,h,i)perylene	Dry Weight	mg/kg	0.06	0.08	<0.05	0.05
IACR_Coarse	Index of Additive Cance Risk		0.799	1.02	0.003	0.001
IACR_Fine	Index of Additive Canc Risk	er	1.54	1.97	0.006	0.001
PAH - Soil - Surrogate Re	covery					
Nitrobenzene-d5	PAH - Surrogate	%	120	119	121	23-130
2-Fluorobiphenyl	PAH - Surrogate	%	104	115	94	30-130
p-Terphenyl-d14	PAH - Surrogate	%	83	101	100	18-137

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	B10681
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969162
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

		Reference Number Sample Date Sample Time	1036919-21 Oct 30, 2014 NA	1036919-24 Oct 30, 2014 NA	1036919-26 Oct 30, 2014 NA	
		Sample Location Sample Description Matrix	A3 / 14-11 / 9.8 / m Soil	A3 / 14-12 / 3.8 / m Soil	A3 / 14-12 / 6.9 / m Soil	
Analyte		Units	Results	Results	Results	Nominal Detectior Limit
Mono-Aromatic Hydroca	rbons - Soil					
Extraction Date	Volatiles		3-Nov-14	3-Nov-14	3-Nov-14	
Benzene	Dry Weight	mg/kg	<0.005	0.045	<0.005	0.005
Toluene	Dry Weight	mg/kg	<0.02	1.81	0.03	0.02
Ethylbenzene	Dry Weight	mg/kg	<0.010	2.49	<0.010	0.01
Total Xylenes (m,p,o)	Dry Weight	mg/kg	<0.03	28.0	<0.03	0.03
Styrene	Dry Weight	mg/kg	<0.010	<0.010	<0.010	0.010
Volatile Petroleum Hydro	ocarbons - Soil					
Extraction Date	Volatiles		3-Nov-14	3-Nov-14	3-Nov-14	
F1 C6-C10	Dry Weight	mg/kg	<10	1410	<10	10
F1 -BTEX	Dry Weight	mg/kg	<10	1380	<10	10
Extractable Petroleum H	ydrocarbons - Soil					
Extraction Date	Total Extractables		3-Nov-14	3-Nov-14	3-Nov-14	
F2c C10-C16	Dry Weight	mg/kg	<50	4540	<50	50
F3c C16-C34	Dry Weight	mg/kg	<50	21000	<50	50
F4c C34-C50	Dry Weight	mg/kg	<100	20000	<100	100
F4HTGCc C34-C50+	Dry Weight	mg/kg	<100	30700	<100	100
% C50+		%	<5	18.9	<5	
Silica Gel Cleanup						
Silica Gel Cleanup			Done	Done	Done	
Soil % Moisture						
Moisture	Soil % Moisture	% by weight	12.30	17.10	10.70	

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)		14-214-CRD	Control Number:	B10681
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada T5S 1E5	Location: LSD:	Rossdale	Date Reported:	Nov 17, 2014
Atto	Tawnya Anderson	LSD. P.O.:	14-214-CRD	Report Number:	1969162
Sampled By:	,	Acct code:	14-214-ORD		
Company:					

	Ref	erence Number Sample Date Sample Time	1036919-22 Oct 30, 2014 NA	1036919-23 Oct 30, 2014 NA	1036919-25 Oct 30, 2014 NA	
	s	ample Location	INA.		N/A	
		ple Description	A3 / 14-12 / 1.0 / m	A3 / 14-12 / 1.5 / m	A3 / 14-12 / 4.6 / m	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection
Hot Water Soluble						Limit
Boron	Hot Water Soluble	mg/kg	11.7	3.53	1.04	0.2
Metals Strong Acid Dige	stion	0 0				
Mercury	Strong Acid Extractable	mg/kg	0.30	0.05	0.04	0.01
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2	<0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	5.3	5.0	5.6	0.2
Barium	Strong Acid Extractable	mg/kg	507	557	222	1
Beryllium	Strong Acid Extractable	mg/kg	0.7	0.5	0.5	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.66	1.83	0.22	0.01
Chromium	Strong Acid Extractable	mg/kg	14.9	14.6	14.7	0.5
Cobalt	Strong Acid Extractable	mg/kg	8.2	7.9	8.4	0.1
Copper	Strong Acid Extractable	mg/kg	26.8	36.8	16.3	1
Lead	Strong Acid Extractable	mg/kg	309	1160	11.9	5
Molybdenum	Strong Acid Extractable	mg/kg	2.3	1.2	<1.0	1
Nickel	Strong Acid Extractable	mg/kg	24.2	23.0	23.0	0.5
Selenium	Strong Acid Extractable	mg/kg	0.4	<0.3	0.3	0.3
Silver	Strong Acid Extractable	mg/kg	0.2	0.2	<0.1	0.1
Thallium	Strong Acid Extractable	mg/kg	0.17	0.16	0.17	0.05
Tin	Strong Acid Extractable	mg/kg	2.1	2.0	1.5	1
Uranium	Strong Acid Extractable	mg/kg	1.1	0.8	0.8	0.5
Vanadium	Strong Acid Extractable	mg/kg	24.2	24.8	25.7	0.1
Zinc	Strong Acid Extractable	mg/kg	123	138	50	1
Barite Soil Analysis	Ū	0 0				
Barium	Extractable	mg/kg	105	183	62.7	0.05
Nater Soluble Parameter	rs	0 0				
Chromium (VI)	Water Soluble	mg/kg	<0.10	<0.10	<0.10	0.1
Polycyclic Aromatic Hyd	rocarbons - Soil	0 0				
Naphthalene	Dry Weight	mg/kg	0.957	19.6	6.22	0.01
Acenaphthylene	Dry Weight	mg/kg	0.14	0.32	0.05	0.05
Acenaphthene	Dry Weight	mg/kg	0.39	0.43	0.07	0.05
Fluorene	Dry Weight	mg/kg	1.37	1.36	0.16	0.05
Phenanthrene	Dry Weight	mg/kg	13.3	6.80	0.43	0.01
Anthracene	Dry Weight	mg/kg	1.41	0.766	0.057	0.003
Fluoranthene	Dry Weight	mg/kg	1.28	1.02	0.14	0.01
Pyrene	Dry Weight	mg/kg	10.4	3.56	0.22	0.01
Benzo(a)anthracene	Dry Weight	mg/kg	1.66	0.65	0.08	0.01
Chrysene	Dry Weight	mg/kg	1.81	1.32	0.10	0.05
T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969162
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	·	
Sampled By:	HB	Acct code:			
Company:	NECL				

		Reference Number	1036919-22	1036919-23	1036919-25	
		Sample Date	Oct 30, 2014	Oct 30, 2014	Oct 30, 2014	
		Sample Time	NA	NA	NA	
		Sample Location				
	S	ample Description	A3 / 14-12 / 1.0 / m	A3 / 14-12 / 1.5 / m	A3 / 14-12 / 4.6 / m	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Polycyclic Aromatic Hydr	ocarbons - Soil - Contir	nued				
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	0.37	0.42	0.07	0.05
Benzo(k)fluoranthene	Dry Weight	mg/kg	<0.05	0.17	<0.05	0.05
Benzo(a)pyrene	Dry Weight	mg/kg	0.33	0.64	0.05	0.05
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	0.29	0.24	<0.05	0.05
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	0.15	0.07	<0.05	0.05
Benzo(g,h,i)perylene	Dry Weight	mg/kg	0.38	0.36	<0.05	0.05
IACR_Coarse	Index of Additive Can Risk	cer	1.08	1.36	0.096	0.001
IACR_Fine	Index of Additive Cano Risk	cer	2.08	2.64	0.184	0.001
PAH - Soil - Surrogate Re	covery					
Nitrobenzene-d5	PAH - Surrogate	%	>130	>130	>130	23-130
2-Fluorobiphenyl	PAH - Surrogate	%	121	130	113	30-130
p-Terphenyl-d14	PAH - Surrogate	%	58	85	88	18-137

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969162
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

	I	Reference Number Sample Date Sample Time Sample Location	1036919-27 Oct 30, 2014 NA	1036919-28 Oct 30, 2014 NA	1036919-29 Oct 30, 2014 NA	
	S	ample Description	A3 / 14-12 / 7.5 / m	A3 / 14-12 / 10.5 / m	A3 / 14-13 / 0.5 / m	
		 Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detectior Limit
Polycyclic Aromatic Hydr	ocarbons - Soil					Linit
Naphthalene	Dry Weight	mg/kg	0.036	0.858	<0.010	0.01
Acenaphthylene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Acenaphthene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Fluorene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Phenanthrene	Dry Weight	mg/kg	<0.01	0.13	0.04	0.01
Anthracene	Dry Weight	mg/kg	<0.003	0.009	0.015	0.003
Fluoranthene	Dry Weight	mg/kg	<0.01	0.03	0.05	0.01
Pyrene	Dry Weight	mg/kg	0.01	0.09	0.06	0.01
Benzo(a)anthracene	Dry Weight	mg/kg	<0.01	0.02	0.03	0.01
Chrysene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	<0.05	<0.05	0.05	0.05
Benzo(k)fluoranthene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Benzo(a)pyrene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Benzo(g,h,i)perylene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
IACR_Coarse	Index of Additive Cano Risk	cer	<0.001	0.006	0.045	0.001
IACR_Fine	Index of Additive Cano Risk	cer	<0.001	0.013	0.086	0.001
PAH - Soil - Surrogate Re	covery					
Nitrobenzene-d5	PAH - Surrogate	%	114	102	118	23-130
2-Fluorobiphenyl	PAH - Surrogate	%	94	89	103	30-130
p-Terphenyl-d14	PAH - Surrogate	%	96	95	83	18-137

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)		14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969162
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

		Reference Number	1036919-27	1036919-28	1036919-30	
		Sample Date	Oct 30, 2014	Oct 30, 2014	Oct 30, 2014	
		Sample Time	NA	NA	NA	
		Sample Location				
				A3 / 14-12 / 10.5 / m		
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detectior Limit
Mono-Aromatic Hydroca	rbons - Soil					
Extraction Date	Volatiles		3-Nov-14	3-Nov-14	3-Nov-14	
Benzene	Dry Weight	mg/kg	<0.005	< 0.005	<0.005	0.005
Toluene	Dry Weight	mg/kg	<0.02	0.03	<0.02	0.02
Ethylbenzene	Dry Weight	mg/kg	<0.010	0.033	0.011	0.01
Total Xylenes (m,p,o)	Dry Weight	mg/kg	<0.03	0.31	0.06	0.03
Styrene	Dry Weight	mg/kg	<0.010	<0.010	<0.010	0.010
Volatile Petroleum Hydro	ocarbons - Soil					
Extraction Date	Volatiles		3-Nov-14	3-Nov-14	3-Nov-14	
F1 C6-C10	Dry Weight	mg/kg	<10	32	38	10
F1 -BTEX	Dry Weight	mg/kg	<10	32	38	10
Extractable Petroleum H	ydrocarbons - Soil					
Extraction Date	Total Extractables		3-Nov-14	3-Nov-14	3-Nov-14	
F2c C10-C16	Dry Weight	mg/kg	<50	217	278	50
F3c C16-C34	Dry Weight	mg/kg	64	1500	10400	50
F4c C34-C50	Dry Weight	mg/kg	<100	1250	5680	100
F4HTGCc C34-C50+	Dry Weight	mg/kg	<100	1820	8610	100
% C50+		%	8.2	16.1	15.2	
Silica Gel Cleanup						
Silica Gel Cleanup			Done	Done	Done	
Soil % Moisture						
Moisture	Soil % Moisture	% by weight	11.00	14.10	22.80	

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	
	T5S 1E5	LSD:		Report Number:	,
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		1000102
Sampled By:	НВ	Acct code:			
Company:	NECL				

		rence Number Sample Date Sample Time nple Location	1036919-29 Oct 30, 2014 NA	1036919-32 Oct 30, 2014 NA		
		le Description	A3 / 14-13 / 0.5 / m	A3 / 14-13 / 6.1 / m		
		Matrix	Soil	Soil		
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	1.77	4.41		0.2
Metals Strong Acid Dig	gestion					
Mercury	Strong Acid Extractable	mg/kg	0.04	0.05		0.01
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2		0.2
Arsenic	Strong Acid Extractable	mg/kg	5.6	5.3		0.2
Barium	Strong Acid Extractable	mg/kg	257	250		1
Beryllium	Strong Acid Extractable	mg/kg	0.6	0.6		0.1
Cadmium	Strong Acid Extractable	mg/kg	0.25	0.23		0.01
Chromium	Strong Acid Extractable	mg/kg	18.9	14.7		0.5
Cobalt	Strong Acid Extractable	mg/kg	8.3	8.6		0.1
Copper	Strong Acid Extractable	mg/kg	19.5	18.7		1
Lead	Strong Acid Extractable	mg/kg	222	10.2		5
Molybdenum	Strong Acid Extractable	mg/kg	1.7	<1.0		1
Nickel	Strong Acid Extractable	mg/kg	23.0	23.9		0.5
Selenium	Strong Acid Extractable	mg/kg	0.4	<0.3		0.3
Silver	Strong Acid Extractable	mg/kg	<0.1	<0.1		0.1
Thallium	Strong Acid Extractable	mg/kg	0.15	0.16		0.05
Tin	Strong Acid Extractable	mg/kg	1.7	1.5		1
Uranium	Strong Acid Extractable	mg/kg	0.9	0.9		0.5
Vanadium	Strong Acid Extractable	mg/kg	25.5	26.0		0.1
Zinc	Strong Acid Extractable	mg/kg	64	56		1
Barite Soil Analysis						
Barium	Extractable	mg/kg	32.0	49.7		0.05
Water Soluble Parame	eters					
Chromium (VI)	Water Soluble	mg/kg	<0.10	<0.10		0.1

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969162
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	·	
Sampled By:	НВ	Acct code:			
Company:	NECL				

		Reference Number Sample Date Sample Time Sample Location Sample Description Matrix	1036919-31 Oct 30, 2014 NA A3 / 14-13 / 5.3 / m Soil			
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mono-Aromatic Hydroca	rbons - Soil					
Extraction Date	Volatiles		3-Nov-14			
Benzene	Dry Weight	mg/kg	<0.005			0.005
Toluene	Dry Weight	mg/kg	<0.02			0.02
Ethylbenzene	Dry Weight	mg/kg	<0.010			0.01
Total Xylenes (m,p,o)	Dry Weight	mg/kg	<0.03			0.03
Styrene	Dry Weight	mg/kg	<0.010			0.010
Volatile Petroleum Hydro	ocarbons - Soil					
Extraction Date	Volatiles		3-Nov-14			
F1 C6-C10	Dry Weight	mg/kg	<10			10
F1 -BTEX	Dry Weight	mg/kg	<10			10
Extractable Petroleum H	ydrocarbons - Soil					
Extraction Date	Total Extractables		3-Nov-14			
F2c C10-C16	Dry Weight	mg/kg	<50			50
F3c C16-C34	Dry Weight	mg/kg	<50			50
F4c C34-C50	Dry Weight	mg/kg	<100			100
F4HTGCc C34-C50+	Dry Weight	mg/kg	<100			100
% C50+		%	<5			
Silica Gel Cleanup						
Silica Gel Cleanup			Done			
Soil % Moisture						
Moisture	Soil % Moisture	% by weight	11.40			

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Analytical Report

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969162
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

	R	eference Number Sample Date	1036919-32 Oct 30, 2014	1036919-33 Oct 30, 2014		
		Sample Time	NA	NA		
	Sa	Sample Location	A3 / 14-13 / 6.1 / m	A3 / 14-13 / 7.5 / m		
	01	Matrix	Soil	Soil		
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Polycyclic Aromatic Hydr	ocarbons - Soil					Linit
Naphthalene	Dry Weight	mg/kg	0.069	0.033		0.01
Acenaphthylene	Dry Weight	mg/kg	<0.05	<0.05		0.05
Acenaphthene	Dry Weight	mg/kg	<0.05	<0.05		0.05
Fluorene	Dry Weight	mg/kg	<0.05	<0.05		0.05
Phenanthrene	Dry Weight	mg/kg	0.10	0.07		0.01
Anthracene	Dry Weight	mg/kg	0.021	<0.003		0.003
Fluoranthene	Dry Weight	mg/kg	0.10	0.02		0.01
Pyrene	Dry Weight	mg/kg	0.10	0.03		0.01
Benzo(a)anthracene	Dry Weight	mg/kg	0.04	<0.01		0.01
Chrysene	Dry Weight	mg/kg	0.06	0.05		0.05
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	0.09	<0.05		0.05
Benzo(k)fluoranthene	Dry Weight	mg/kg	<0.05	<0.05		0.05
Benzo(a)pyrene	Dry Weight	mg/kg	0.06	<0.05		0.05
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	<0.05	<0.05		0.05
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	<0.05	<0.05		0.05
Benzo(g,h,i)perylene	Dry Weight	mg/kg	<0.05	<0.05		0.05
IACR_Coarse	Index of Additive Cance Risk	er	0.098	0.003		0.001
IACR_Fine	Index of Additive Cance Risk	er	0.188	0.005		0.001
PAH - Soil - Surrogate Re	covery					
Nitrobenzene-d5	PAH - Surrogate	%	87	124		23-130
2-Fluorobiphenyl	PAH - Surrogate	%	116	118		30-130
p-Terphenyl-d14	PAH - Surrogate	%	91	101		18-137

RhSeunem

Randy Neumann, BSc Vice President

Approved by:

Data have been validated by Analytical Quality Control and Exova's Integrated Data Validation System (IDVS). Generation and distribution of the report, and approval by the digitized signature above, are performed through a secure and controlled automatic process.

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	,
	T5S 1E5	LSD:		Report Number:	*
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	Report Number.	1000102
Sampled By:	HB	Acct code:			
Company:	NECL				

Hot Water Soluble

Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Boron	mg/L	0.022938	-0.01	0.02		yes
Date Acquired:	November 03, 2014					
Client Sample Repl	icates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Boron	mg/kg	0.59	0.62	10	0.10	yes
Date Acquired:	November 03, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Boron	mg/kg	1.37	1.07	2.05		yes
Date Acquired:	November 03, 2014					
Boron	mg/kg	0.11	0.09	0.11		yes
Date Acquired:	November 03, 2014					

Metals Strong Acid Digestion

Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Mercury	ug/L	-0.06	-0.07	0.13		yes
Antimony	ug/L	0.066	-0.1	0.2		yes
Arsenic	ug/L	0.002	-0.2	0.2		yes
Barium	ug/L	0.615	-1	1		yes
Beryllium	ug/L	-0.007	-0.1	0.1		yes
Cadmium	ug/L	-0.009	-0.01	0.01		yes
Chromium	ug/L	0.002	-0.5	0.5		yes
Cobalt	ug/L	0.0045125	-0.1	0.1		yes
Copper	ug/L	0.022	-0.6	1.2		yes
Lead	ug/L	0.025	-5.0	5.0		yes
Molybdenum	ug/L	0.022	-1.0	1.0		yes
Nickel	ug/L	0.088	-0.4	0.7		yes
Selenium	ug/L	0.003	-0.3	0.3		yes
Silver	ug/L	0.038	-0.09	0.14		yes
Thallium	ug/L	-0.009	-0.04	0.04		yes
Tin	ug/L	3.818	0.0	7.2		yes
Uranium	ug/L	0.004	-0.5	0.5		yes
Vanadium	ug/L	0.034	-0.1	0.1		yes
Zinc	ug/L	0.257	-1	1		yes
Date Acquired: Nov	vember 03, 2014					
Client Sample Replicate	es Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Mercury	mg/kg	0.11	0.12	10	0.03	yes
Antimony	mg/kg	<0.2	<0.2	20	0.4	yes
Arsenic	mg/kg	5.3	5.4	20	0.4	yes
Barium	mg/kg	507	529	20	2	yes
Beryllium	mg/kg	0.7	0.7	20	0.2	yes
Cadmium	mg/kg	0.66	0.62	20	0.02	yes
Chromium	mg/kg	14.9	15.1	20	1.1	yes

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969162
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	·	
Sampled By:	HB	Acct code:			
Company:	NECL				

Metals Strong Acid Digestion - Continued

Client Sample Rep	licates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Cobalt	mg/kg	8.2	9.5	20	0.2	yes
Copper	mg/kg	26.8	28.3	20	2.2	yes
Lead	mg/kg	309	308	20	0.2	yes
Molybdenum	mg/kg	2.3	2.4	20	2.2	yes
Nickel	mg/kg	24.2	25.6	20	1.1	yes
Selenium	mg/kg	0.4	0.3	20	0.7	yes
Silver	mg/kg	0.2	0.2	20	0.22	yes
Thallium	mg/kg	0.17	0.17	20	0.11	yes
Tin	mg/kg	2.1	2.1	20	2.2	yes
Uranium	mg/kg	1.1	1.1	20	1.1	yes
Vanadium	mg/kg	24.2	25.9	20	0.2	yes
Zinc	mg/kg	123	129	20	2	yes
Date Acquired:	November 03, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Mercury	mg/kg	0.31	0.28	0.34		yes
Antimony	mg/kg	39.7	36.1	43.9		yes
Arsenic	mg/kg	39.7	36.7	44.3		yes
Barium	mg/kg	198	185	215		yes
Beryllium	mg/kg	19.1	17.4	22.2		yes
Cadmium	mg/kg	2.03	1.80	2.20		yes
Chromium	mg/kg	101	92.2	105.8		yes
Cobalt	mg/kg	19.0	18.5	22.5		yes
Copper	mg/kg	193	176.3	207.3		yes
Lead	mg/kg	19.3	18.6	21.8		yes
Molybdenum	mg/kg	188	172.6	215.4		yes
Nickel	mg/kg	100	90.6	107.4		yes
Selenium	mg/kg	39.5	36.1	42.9		yes
Silver	mg/kg	20.0	16.69	21.97		yes
Thallium	mg/kg	9.90	9.57	11.23		yes
Tin	mg/kg	192	171.9	201.9		yes
Uranium	mg/kg	90.5	90.3	108.0		yes
Vanadium	mg/kg	19.5	16.3	20.3		yes
Zinc	mg/kg	208	180	220		yes
Date Acquired:	November 03, 2014					
Mercury	mg/kg	0.08	0.05	0.11		yes
Date Acquired:	November 03, 2014					
Mercury	mg/kg	0.25	0.15	0.42		yes
Antimony	mg/kg	0.9	0.3	1.1		yes
Arsenic	mg/kg	81.6	65.9	97.9		yes
Barium	mg/kg	243	213	270		yes
Beryllium	mg/kg	0.7	0.5	0.9		yes

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969162
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	·	
Sampled By:	HB	Acct code:			
Company:	NECL				

Metals Strong Acid Digestion - Continued

Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC
Cadmium	mg/kg	2.03	1.50	2.64	yes
Chromium	mg/kg	33.6	27.4	39.2	yes
Cobalt	mg/kg	13.1	11.3	16.0	yes
Copper	mg/kg	198	162.7	222.9	yes
Lead	mg/kg	105	99.6	135.6	yes
Molybdenum	mg/kg	2.5	2.0	3.8	yes
Nickel	mg/kg	61.8	47.1	73.5	yes
Selenium	mg/kg	0.7	0.3	1.3	yes
Silver	mg/kg	0.8	0.25	1.15	yes
Thallium	mg/kg	0.31	0.26	0.40	yes
Tin	mg/kg	3.8	1.0	5.4	yes
Uranium	mg/kg	1.1	0.9	1.5	yes
Vanadium	mg/kg	43.0	31.5	56.1	yes
Zinc	mg/kg	483	355	550	yes
Date Acquired:	November 03, 2014				

Barite Soil Analysis

Dante Soli Analy	/ 313					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Barium	mg/L	0.0039	-0.00	0.01		yes
Date Acquired:	November 03, 2014					
Client Sample Rep	licates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Barium	mg/kg	15.5	14.6	10	5.00	yes
Date Acquired:	November 03, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Barium	mg/kg	11.2	8.87	12.71		yes
Date Acquired:	November 03, 2014					
Barium	mg/kg	0.10	0.09	0.11		yes
Date Acquired:	November 03, 2014					
Water Soluble P	arameters					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Chromium (VI)	mg/L	0	-0.10	0.10		yes
Date Acquired:	November 03, 2014					
Client Sample Rep	licates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Chromium (VI)	mg/kg	<0.10	<0.10	10	0.01	yes
Date Acquired:	November 03, 2014					
Mono-Aromatic	Hydrocarbons - Soil					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Benzene	ng	0	-0.005	0.005		yes
Toluene	ng	0	-0.06	0.06		yes

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969162
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	•	
Sampled By:	HB	Acct code:			
Company:	NECL				

Mono-Aromatic Hydrocarbons - Soil -

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Ethylbenzene	ng	0	-0.030	0.030	yes
Total Xylenes (m,p,o)	ng	0	-0.09	0.09	yes
Styrene	ng	0	-0.030	0.030	yes
Date Acquired: Noven	nber 02, 2014				
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
Benzene	ng	112.40	85	115	yes
Toluene	ng	93.20	85	115	yes
Ethylbenzene	ng	86.80	85	115	yes
Total Xylenes (m,p,o)	ng	86.00	85	115	yes
	ng	102.00	85	115	yes

Volatile Petroleum Hydrocarbons - Soil

Upper Limit	Lower Limit	Measured	Units	Blanks
10	-10	0	ng	F1 C6-C10
			November 02, 2014	Date Acquired:
Upper Limit	Lower Limit	% Recovery	Units	Matrix Spike
120	80	109	mg/kg	F1 C6-C10
			November 02, 2014	Date Acquired:
	10 Upper Limit	-10 10 Lower Limit Upper Limit	0 -10 10 % Recovery Lower Limit Upper Limit	ng 0 -10 10 November 02, 2014 Vinits % Recovery Lower Limit Upper Limit mg/kg 109 80 120

Extractable Petroleum Hydrocarbons -

Soil						
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
F2c C10-C16	ug/mL	0	-10	10		yes
F3c C16-C34	ug/mL	0	-30	30		yes
F4c C34-C50	ug/mL	0	-20	20		yes
F4HTGCc C34-C50+	ug/mL	0	-20	20		yes
Date Acquired: Novem	ber 02, 2014					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
F2c C10-C16	ug/mL	94.06	85	115		yes
F3c C16-C34	ug/mL	108.94	85	115		yes
F4c C34-C50	ug/mL	103.98	85	115		yes
F4HTGCc C34-C50+	ug/mL	93.58	85	115		yes
Date Acquired: Novem	ber 02, 2014					
Client Sample Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
F2c C10-C16	mg/kg	<50	<50	50	10	yes
F3c C16-C34	mg/kg	<50	<50	50	10	yes
F4c C34-C50	mg/kg	<100	<100	50	10	yes
F4HTGCc C34-C50+	mg/kg	<100	<100	50	10	yes
Date Acquired: Novem	ber 02, 2014					

Exova Edmonton, Alberta T6B 3J4, Canada

T: +1 (780) 438-5522
 Exova
 1. Tr (100) 100 0021

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E: Edmonton@exova.com
 W: www.exova.com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	,
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

Extractable Petroleum Hydrocarbons -

Soil - Continued Matrix Spike	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
F2c C10-C16	mg/kg	101	65	135	yes
F3c C16-C34	mg/kg	105	65	135	yes
F4c C34-C50	mg/kg	96	65	135	yes
F4HTGCc C34-C50+	mg/kg	93	65	135	yes
Date Acquired: Nover	mber 02, 2014				

Polycyclic Aromatic Hydrocarbons - Soil

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Naphthalene	ng/mL	0	-0.010	0.010	yes
Acenaphthylene	ng/mL	0	-0.05	0.05	yes
Acenaphthene	ng/mL	0	-0.05	0.05	yes
Fluorene	ng/mL	0	-0.05	0.05	yes
Phenanthrene	ng/mL	0	-0.01	0.01	yes
Anthracene	ng/mL	0	-0.003	0.003	yes
Fluoranthene	ng/mL	0	-0.01	0.01	yes
Pyrene	ng/mL	0	-0.01	0.01	yes
Benzo(a)anthracene	ng/mL	0	-0.01	0.01	yes
Chrysene	ng/mL	0	-0.05	0.05	yes
Benzo(b)fluoranthene	ng/mL	0	-0.05	0.05	yes
Benzo(b+j)fluoranthene	ng/mL	0	-0.05	0.05	yes
Benzo(k)fluoranthene	ng/mL	0	-0.05	0.05	yes
Benzo(a)pyrene	ng/mL	0	-0.05	0.05	yes
Indeno(1,2,3-c,d)pyrene	ng/mL	0	-0.05	0.05	yes
Dibenzo(a,h)anthracene	ng/mL	0	-0.05	0.05	yes
Benzo(g,h,i)perylene	ng/mL	0	-0.05	0.05	yes
Date Acquired: Novem	ber 02, 2014				
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
Naphthalene	ng/mL	90.20	80	120	yes
Acenaphthylene	ng/mL	88.00	80	120	yes
Acenaphthene	ng/mL	90.20	80	120	yes
Fluorene	ng/mL	93.00	80	120	yes
Phenanthrene	ng/mL	88.40	80	120	yes
Anthracene	ng/mL	89.60	80	120	yes
Fluoranthene	ng/mL	93.40	80	120	yes
Pyrene	ng/mL	94.60	80	120	yes
Benzo(a)anthracene	ng/mL	89.80	80	120	yes
Chrysene	ng/mL	88.40	80	120	yes
		00.00	80	120	yes
Benzo(b)fluoranthene	ng/mL	88.80	00	-	
Benzo(b)fluoranthene Benzo(k)fluoranthene	ng/mL ng/mL	94.80	80	120	yes
. ,	0				yes

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	,
	T5S 1E5	LSD:		Report Number:	·
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

Polycyclic Aromatic Hydrocarbons - Soil -

ontinued Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Dibenzo(a,h)anthracene	ng/mL	93.00	80	120		yes
Benzo(g,h,i)perylene	ng/mL	88.80	80	120		yes
	ber 02, 2014					,
Client Sample Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Naphthalene	mg/kg	0.858	0.681	50	0.020	yes
Acenaphthylene	mg/kg	<0.05	<0.05	50	0.10	yes
Acenaphthene	mg/kg	<0.05	<0.05	50	0.10	ye
Fluorene	mg/kg	<0.05	<0.05	50	0.10	ye
Phenanthrene	mg/kg	0.13	0.10	50	0.02	ye
Anthracene	mg/kg	0.009	0.008	50	0.006	ye
Fluoranthene	mg/kg	0.03	0.03	50	0.02	ye
Pyrene	mg/kg	0.09	0.09	50	0.02	ye
Benzo(a)anthracene	mg/kg	0.02	0.01	50	0.02	ye
Chrysene	mg/kg	<0.05	<0.05	50	0.10	ye
Benzo(b)fluoranthene	mg/kg	<0.05	<0.05	50	0.10	ye
Benzo(k)fluoranthene	mg/kg	<0.05	<0.05	50	0.10	ye
Benzo(a)pyrene	mg/kg	<0.05	<0.05	50	0.10	ye
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.05	<0.05	50	0.10	ye
Dibenzo(a,h)anthracene	mg/kg	<0.05	<0.05	50	0.10	ye
Benzo(g,h,i)perylene	mg/kg	<0.05	<0.05	50	0.10	ye
Date Acquired: Novem	ber 02, 2014					
Matrix Spike	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Naphthalene	mg/kg	113	70	130		ye
Acenaphthylene	mg/kg	99	70	130		yes
Acenaphthene	mg/kg	111	70	130		ye
Fluorene	mg/kg	110	70	130		yes
Phenanthrene	mg/kg	104	70	130		ye
Anthracene	mg/kg	98	70	130		ye
Fluoranthene	mg/kg	112	70	130		ye
Pyrene	mg/kg	114	70	130		ye
Benzo(a)anthracene	mg/kg	94	70	130		ye
Chrysene	mg/kg	112	70	130		ye
Benzo(b)fluoranthene	mg/kg	92	70	130		ye
Benzo(k)fluoranthene	mg/kg	100	70	130		ye
Benzo(a)pyrene	mg/kg	87	70	130		ye
		46.4				

104

96

105

70

70

70

130

130

130

yes

yes

yes

Date Acquired: November 02, 2014

Indeno(1,2,3-c,d)pyrene

Dibenzo(a,h)anthracene

Benzo(g,h,i)perylene

mg/kg

mg/kg

mg/kg

Edmonton, Alberta T6B 3J4, Canada

 Exova
 T: +1 (780) 438-5522

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E: Edmonton@exova.com
 W: www.exova com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada)		14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Oct 31, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Nov 17, 2014
	T5S 1E5	LSD:		Report Number:	1969162
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

PAH - Soil - Surrogate Recovery

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Nitrobenzene-d5	%	111.27	23	130	yes
2-Fluorobiphenyl	%	94.32	30	130	yes
p-Terphenyl-d14	%	108.53	18	137	yes
Date Acquired:	November 02, 2014				

 Exova
 T: +1 (780) 438-5522

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E: Edmonton@exova.com

 T6B 3J4, Canada
 W: www.exova com

Methodology and Notes

Bill To:	City of Edmonton	Project:		Lot ID:	1036919
Report To:	Nichols Environmental (Canada) 17331-107 Ave NE Edmonton, AB, Canada	ID: Name: Location:	14-214-CRD Phase II ESA Rossdale	Control Number: Date Received:	B10681 Oct 31, 2014
Attn:	T5S 1E5 Tawnya Anderson	LSD: P.O.:	14-214-CRD	Date Reported: Report Number:	,
Sampled By: Company:		Acct code:			

Method of Analysis

Method Name	Reference	Method Date Analysis Location Started
1:5 Water Soluble Extraction	McKeague	* Soluble Salts in Extracts of 1:5 03-Nov-14 Exova Edmonton Soil:Water Mixtures, 3.23
Barium (Extractable) in soil (0.1 M CaCl2)	Ab Env	Analytical Method for Extractable 03-Nov-14 Exova Edmonton Barium, 6.6.2
Boron in general soil	McKeague	* Hot Water Soluble Boron - 03-Nov-14 Exova Edmonton Azomethine-H Method, 4.61
BTEX-CCME - Soil	CCME	 * Reference Method for Canada-Wide 02-Nov-14 Exova Calgary Standard for PHC in Soil, CWS PHCS TIER 1
BTEX-CCME - Soil	US EPA	 * Volatile Organic Compounds in Various 02-Nov-14 Exova Calgary Sample Matrices Using Equilibrium Headspace Analysis/Gas Chromatography Mass Spectrometry, 5021/8260
Mercury (Hot Block) in Soil	US EPA	 Determination of Hg in Sediment by 03-Nov-14 Exova Edmonton Cold Vapor Atomic Absorption Spec, 245.5
Metals ICP-MS (Hot Block) in soil	SW-846	 * Acid Digestion of Sediments, Sludges, 03-Nov-14 Exova Edmonton and Soils, EPA 3050B
PAH - Soil	AESRD	Index of Additive Cancer Risk (IACR), 02-Nov-14 Exova Calgary PAHs
PAH - Soil	US EPA	 * Semivolatile Organic Compounds by 02-Nov-14 Exova Calgary Gas Chromatography/Mass Spectrometry, 8270
TEH-CCME-Soil (Shake)	CCME	 * Reference Method for Canada-Wide 02-Nov-14 Exova Calgary Standard for PHC in Soil, CWS PHCS TIER 1
		* Reference Method Modified

References

Ab Env	Alberta Environment, Soil Quality Guidelines for Barite
AESRD	Alberta Tier 1 Soil and Groundwater Remediation Guidelines
APHA	Standard Methods for the Examination of Water and Wastewater
CCME	Canadian Council of Ministers of the Environment
McKeague	Manual on Soil Sampling and Methods of Analysis

Exova T: +1 (780) 438-5522 7217 Roper Road NW F: +1 (780) 434-8586 Edmonton, Alberta E: Edmonton@exova.com T6B 3J4, Canada W: www.exova com

Methodology and Notes

Bill To:	City of Edmonton	Project:	
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD
	17331-107 Ave NE	Name:	Phase II ESA
	Edmonton, AB, Canada	Location:	Rossdale
	T5S 1E5	LSD:	
Attn:	Tawnya Anderson	P.O.:	14-214-CRD
Sampled By:	НВ	Acct code:	
Company:	NECL		

Control Number: B10681 Date Received: Oct 31, 2014 Date Reported: Nov 17, 2014 Report Number: 1969162

Lot ID: 1036919

SW-846 US EPA Test Methods for Evaluating Solid Waste US Environmental Protection Agency Test Methods

Comments:

- Report was issued to include addition of Chromatogram analysis on samples 1-4,9,11,15,17,20,21,24,26-28,30-31 requested by Tawnya Anderson of Nichols on Nov 14th/14. Previous report 1964875.
- >130 The surrogate recovery for PAH analysis is outside the range 23-130 % on samples #22,23,25 due to other sample material interfering with this surrogate.

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To:	City of Edmonton	Project:	
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD
	17331-107 Ave NE	Name:	Phase II ESA
	Edmonton, AB, Canada	Location:	Rossdale
	T5S 1E5	LSD:	
Attn:	Tawnya Anderson	P.O.:	14-214-CRD
Sampled By:	НВ	Acct code:	
Company:	NECL		

Control Number: B10681 Date Received: Oct 31, 2014 Date Reported: Nov 17, 2014 Report Number: 1969162

Lot ID: 1036919

Petroleum Hydrocarbons in Soil

Batch Notes

- The method used complies with the Reference Method for the Canada Wide Standards for Petroleum Hydrocarbons in 1. Soil - Tier 1, April 2001, including Addendum 1, and is accredited for use in Exova.
- 2. Modifications of the method: See Notes and Methodology for nonconformances (if applicable).
- Qualifications on results: See Notes and Methodology for nonconformances (if applicable). 3.
- Silica gel treatment is performed for fractions F2, F3, F4. 4.
- F1-BTEX: BTEX has been subtracted from the F1 fraction. 5.
- 6. If analyzed, naphthalene has been subtracted from fraction F2 and selected PAHs have been subtracted from fraction F3.
- 7. F4HTGC is reported when more than 5% of the total carbon envelope elutes past C_{50} .
- Exova does not routinely report Gravimetric Heavy Hydrocarbons (F4G or F4G-sg), F4HTGC through extended range 8. high temperature GC is reported instead.
- When both F4(C₃₄-C₅₀) and F4HTGC are reported, F4HTGC is the final F4 that is to be used for interpreting the CWS. 9.
- Quality criteria met for the batch: Data is reported in Quality Control Section of report (if requested). -nC6 and nC10 response factors (RF) are within 30% of RF for toluene -nC10, nC16 and nC34 RFs are within 10% of each other -nC50 RF is within 30% of the average RF for nC10+nC16+nC34 -linearity is within 15% for each of the calibrated carbon ranges
- 11. Batch data for analytical guality control are available on request.
- 12. Extraction and analysis holding times were met: See Notes and Methodology for nonconformances (if applicable).

RhSeunem

Approved by:

Randy Neumann, BSc Vice President

Data have been validated by Analytical Quality Control and Exova's Integrated Data Validation System (IDVS).

 Exova
 T +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F +1 (403) 291-2021

 Caigary, Alberta
 E: NWL-Caigary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10681
		Location:	Rossdale	Date Received:	Oct 31, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969162
	T5S 1E5		2. The state of the second	Characterization of a state of a	
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:	NECL				

Terms and conditions: www.exova.ca/terms&conditions html

 Exova
 T=+1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F=+1 (403) 291-2021

 Calgary, Alberta
 E=NWL-Calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10681
and a second second		Location:	Rossdale	Date Received:	Oct 31, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969162
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:	NECL				

 Exova
 T:+1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F:+1 (403) 291-2021

 Calgary, Alberta
 E: NWL-Calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10681
		Location:	Rossdale	Date Received:	Oct 31, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969162
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:	NECL				

 Exova
 T:+1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F:+1 (403) 291-2021

 Calgary, Alberta
 E: NWL-Calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10681
		Location:	Rossdale	Date Received:	Oct 31, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969162
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:	NECL				

 Exova
 T=+1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F=+1 (403) 291-2021

 Calgary, Alberta
 E=NWL-Calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10681
		Location:	Rossdale	Date Received:	Oct 31, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969162
	T5S 1E5		The state of the state of the second s	CARL REPORT OF A REAL PROPERTY OF	
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:	NECL				

 Exova
 T:+1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F:+1 (403) 291-2021

 Calgary, Alberta
 E: NWL-Calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10681
		Location:	Rossdale	Date Received:	Oct 31, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969162
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:	NECL				

 Exova
 T +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F +1 (403) 291-2021

 Caigary, Alberta
 E: NWL-Caigary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10681
		Location:	Rossdale	Date Received:	Oct 31, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969162
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:	NECL				
Second Contraction					

 Exova
 T +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F +1 (403) 291-2021

 Caigary, Alberta
 E: NWL-Caigary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Hydrocarbon Chromatogram

 Exova
 T:+1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F:+1 (403) 291-2021

 Calgary, Alberta
 E: NWL-Calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10681
		Location:	Rossdale	Date Received:	Oct 31, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969162
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:	NECL				

C8-C22

Crude Oils

C3-C60+

Diesel

Varsol

C8-C12

 Exova
 T +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F +1 (403) 291-2021

 Caigary, Alberta
 E: NWL-Caigary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10681
		Location:	Rossdale	Date Received:	Oct 31, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969162
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:	NECL				

 Exova
 T +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F +1 (403) 291-2021

 Calgary, Alberta
 E NWL-Calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Hydrocarbon Chromatogram

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10681
		Location:	Rossdale	Date Received:	Oct 31, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969162
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:	NECL				
Exo	va Number: 1036919-24	Sample D	escription: 3.8 A3	The street of	
Se	ample Date: Oct 30, 2014		14-12 m	Silica Gel Treat	ed

 Exova
 T +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F +1 (403) 291-2021

 Caigary, Alberta
 E: NWL-Caigary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10681
		Location:	Rossdale	Date Received:	Oct 31, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969162
	T5S 1E5		and the second states of the second	CAN'N CALCULATION OF A CALC	
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:	NECL				

Terms and conditions: www.exova.ca/terms&conditions html

 Exova
 T:+1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F:+1 (403) 291-2021

 Calgary, Alberta
 E: NWL-Calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10681
		Location:	Rossdale	Date Received:	Oct 31, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969162
	T5S 1E5		and the second state of the second	Contraction of the second second second	
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:	NECL				

C7-C16

C8-C22

Kerosene

Diesel

C4-C12

C8-C12

Gasoline

Varsol

Lubricating Oils

Crude Oils

C20-C40

C3-C60+

 Exova
 T=+1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F=+1 (403) 291-2021

 Calgary, Alberta
 E: NWL-Calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10681
		Location:	Rossdale	Date Received:	Oct 31, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969162
	T5S 1E5		The start strate in the second second	CAN'T DESCRIPTION OF THE PARTY OF THE	
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:					
Service an Brown					

Hydrocarbon Chromatogram

 Exova
 T +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F +1 (403) 291-2021

 Caigary, Alberta
 E: NWL-Caigary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1036919
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10681
		Location:	Rossdale	Date Received:	Oct 31, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 17, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1969162
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:	NECL				

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Report Transmission Cover Page

Bill To:	City of Edmonton	Project:		Lot ID:	1037841
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 5, 2014
	Edmonton, AB, Canada	Location:	Rossdale:Area 6	Date Reported:	,
	T5S 1E5	LSD:		Report Number:	
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

Contact & Affiliation	Address	Delivery Commitments
Tawnya Anderson Nichols Environmental (Ca	17331-107 Ave NE nada) Ltd Edmonton, Alberta T5S 1E5 Phone: (780) 484-3377 Fax: (780) 484-5093 Email:	On [Lot Verification] send (COA) by Email - Merge Reports On [Report Approval] send (COC, Test Report) by Email - Merge Reports On [Report Approval] send (Test Report) by Email - Single Report On [Report Approval] send (COC, Test Report) by Email - Merge Reports On [Lot Creation] send (COR) by Email - Single Report
Kelly Goetz Nichols Environmental (Ca	17331-107 Ave NE nada) Ltd Edmonton, Alberta T5S 1E5 Phone: (780) 484-3377 Fax: (780) 484-5093 Email	On [Lot Approval and Final Test Report Approval] send (Invoice) by Email - Merge Reports On [Lot Approval and Final Test Report Approval] send (Invoice) by Email - Merge Reports

Notes To Clients:

• Report was issued to include addition of SPLP leachate and PAH1 analysis on the resultant leachate as requested by Tami Dolen of the City of Edmonton on November 18, 2014. Previous report 1966630.

• Report was issued to include addition of PS24 analysis on sample #1 requested by Tawnya Anderson of Nichols Environmental on November 19, 2014. Previous report 1966630.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1037841
Report To:	Nichols Environmental (Canada)		14-214-CRD	Control Number:	B10683
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 5, 2014
	Edmonton, AB, Canada	Location:	Rossdale:Area 6	Date Reported:	Nov 25, 2014
	T5S 1E5	LSD:		Report Number:	1969892
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

	Kere	rence Number Sample Date	1037841-1 Nov 03, 2014	1037841-3 Nov 03, 2014	1037841-4 Nov 03, 2014	
		Sample Time	NA	NA	NA	
	Sa	mple Location				
	Samp	le Description	A6:14-14 / 3.5 / m	A6:14-14 / 5.0 / m	A6:14-15 / 3.0 / m	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detectio Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	19.2	9.58	27.6	0.2
Metals Strong Acid Dig	gestion					
Mercury	Strong Acid Extractable	mg/kg	0.39	0.11	0.27	0.01
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2	0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	6.8	7.0	9.7	0.2
Barium	Strong Acid Extractable	mg/kg	469	325	856	1
Beryllium	Strong Acid Extractable	mg/kg	1.0	0.8	1.4	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.26	0.30	0.33	0.01
Chromium	Strong Acid Extractable	mg/kg	15.3	19.2	13.8	0.5
Cobalt	Strong Acid Extractable	mg/kg	9.5	10.3	9.1	0.1
Copper	Strong Acid Extractable	mg/kg	29.7	23.5	54.2	1
Lead	Strong Acid Extractable	mg/kg	28.7	13.5	34.2	5
Molybdenum	Strong Acid Extractable	mg/kg	1.1	1.0	1.5	1
Nickel	Strong Acid Extractable	mg/kg	25.9	28.4	25.0	0.5
Selenium	Strong Acid Extractable	mg/kg	0.5	0.4	0.4	0.3
Silver	Strong Acid Extractable	mg/kg	0.1	0.1	0.2	0.1
Thallium	Strong Acid Extractable	mg/kg	0.23	0.25	0.27	0.05
Tin	Strong Acid Extractable	mg/kg	1.1	1.1	1.4	1
Uranium	Strong Acid Extractable	mg/kg	1.1	1.0	1.6	0.5
Vanadium	Strong Acid Extractable	mg/kg	27.7	32.3	27.3	0.1
Zinc	Strong Acid Extractable	mg/kg	72	73	88	1
Salinity						
рН	Saturated Paste	pН	7.7	8.2	7.4	
Barite Soil Analysis						
Barium	Extractable	mg/kg	6.2	12.0	4.2	0.05
Water Soluble Parame	ters					
Chromium (VI)	Water Soluble	mg/kg	<0.10	<0.10	<0.10	0.1

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1037841
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 5, 2014
	Edmonton, AB, Canada	Location:	Rossdale:Area 6	Date Reported:	Nov 25, 2014
	T5S 1E5	LSD:		Report Number:	1969892
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

		Reference Number	1037841-1	1037841-9		
		Sample Date	Nov 03, 2014	Nov 03, 2014		
		Sample Time	NA	NA		
		Sample Location				
		Sample Description	A6:14-14 / 3.5 / m	A6:14-16 / 7.5 / m		
		Matrix	Soil	Soil		
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Particle Size Analysis	- Wet Sieve					
Texture			Fine-Grained	Coarse-Grained		
Texture						

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1037841
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 5, 2014
	Edmonton, AB, Canada	Location:	Rossdale:Area 6	Date Reported:	Nov 25, 2014
	T5S 1E5	LSD:		Report Number:	1969892
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

	F	Reference Number Sample Date Sample Time	1037841-2 Nov 03, 2014 NA	1037841-3 Nov 03, 2014 NA	1037841-4 Nov 03, 2014 NA	
	S	Sample Location ample Description Matrix	A6:14-14 / 4.0 / m Soil	A6:14-14 / 5.0 / m Soil	A6:14-15 / 3.0 / m Soil	
Analyte		Units	Results	Results	Results	Nominal Detect Limit
Polycyclic Aromatic Hydr	ocarbons - Soil					Limit
Naphthalene	Dry Weight	mg/kg	0.024	0.027	0.034	0.01
Acenaphthylene	Dry Weight	mg/kg	<0.05	<0.05	0.05	0.05
Acenaphthene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Fluorene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Phenanthrene	Dry Weight	mg/kg	0.24	0.24	0.39	0.01
Anthracene	Dry Weight	mg/kg	0.078	0.102	0.153	0.003
Fluoranthene	Dry Weight	mg/kg	0.31	0.19	0.52	0.01
Pyrene	Dry Weight	mg/kg	0.29	0.21	0.52	0.01
Benzo(a)anthracene	Dry Weight	mg/kg	0.16	0.11	0.26	0.01
Chrysene	Dry Weight	mg/kg	0.18	0.12	0.25	0.05
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	0.20	0.12	0.28	0.05
Benzo(k)fluoranthene	Dry Weight	mg/kg	0.12	0.09	0.15	0.05
Benzo(a)pyrene	Dry Weight	mg/kg	0.15	0.14	0.21	0.05
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	0.08	0.08	0.11	0.05
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Benzo(g,h,i)perylene	Dry Weight	mg/kg	0.07	0.08	0.09	0.05
IACR_Coarse	Index of Additive Canc Risk	er	0.640	0.464	0.849	0.001
IACR_Fine	Index of Additive Canc Risk	er	1.23	0.896	1.64	0.001
PAH - Soil - Surrogate Re	covery					
Nitrobenzene-d5	PAH - Surrogate	%	95	103	96	23-130
2-Fluorobiphenyl	PAH - Surrogate	%	101	99	107	30-130
p-Terphenyl-d14	PAH - Surrogate	%	98	97	95	18-137
T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Bill To:	City of Edmonton	Project:		Lot ID:	1037841
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 5, 2014
	Edmonton, AB, Canada	Location:	Rossdale:Area 6	Date Reported:	Nov 25, 2014
	T5S 1E5	LSD:		Report Number:	1969892
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

		erence Number Sample Date Sample Time ample Location	1037841-5 Nov 03, 2014 NA	1037841-6 Nov 03, 2014 NA	1037841-7 Nov 03, 2014 NA	
		ple Description Matrix	A6:14-15 / 6.0 / m Soil	A6:14-16 / 1.5 / m Soil	A6:14-16 / 2.5 / m Soil	
Analyte		Units	Results	Results	Results	Nominal Detection
Hot Water Soluble						Limit
Boron	Hot Water Soluble	mg/kg	33.1	17.6	18.2	0.2
Metals Strong Acid Dige	estion	5.5				
Mercury	Strong Acid Extractable	mg/kg	0.09	1.15	0.50	0.01
Antimony	Strong Acid Extractable	mg/kg	<0.2	0.7	0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	9.0	41.0	12.9	0.2
Barium	Strong Acid Extractable	mg/kg	702	1630	642	1
Beryllium	Strong Acid Extractable	mg/kg	1.3	2.8	1.2	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.33	3.16	0.42	0.01
Chromium	Strong Acid Extractable	mg/kg	16.0	19.2	13.7	0.5
Cobalt	Strong Acid Extractable	mg/kg	10.6	11.7	9.3	0.1
Copper	Strong Acid Extractable	mg/kg	21.8	79.6	25.8	1
Lead	Strong Acid Extractable	mg/kg	16.3	148	49.8	5
Molybdenum	Strong Acid Extractable	mg/kg	2.5	4.5	1.9	1
Nickel	Strong Acid Extractable	mg/kg	26.4	38.2	26.2	0.5
Selenium	Strong Acid Extractable	mg/kg	0.5	0.7	0.6	0.3
Silver	Strong Acid Extractable	mg/kg	0.2	0.8	0.2	0.1
Thallium	Strong Acid Extractable	mg/kg	0.26	0.97	0.29	0.05
Tin	Strong Acid Extractable	mg/kg	1.2	2.4	1.4	1
Uranium	Strong Acid Extractable	mg/kg	1.5	3.2	1.3	0.5
Vanadium	Strong Acid Extractable	mg/kg	31.5	34.2	26.9	0.1
Zinc	Strong Acid Extractable	mg/kg	67	147	69	1
Barite Soil Analysis	0	0.0				
Barium	Extractable	mg/kg	4.2	31.2	3.8	0.05
Water Soluble Paramete	rs	0.0				
Chromium (VI)	Water Soluble	mg/kg	<0.10	<0.10	<0.10	0.1
Polycyclic Aromatic Hyd	drocarbons - Soil					
Naphthalene	Dry Weight	mg/kg	<0.010	0.075	0.019	0.01
Acenaphthylene	Dry Weight	mg/kg	<0.05	< 0.05	<0.05	0.05
Acenaphthene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Fluorene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Phenanthrene	Dry Weight	mg/kg	0.03	0.17	0.15	0.01
Anthracene	Dry Weight	mg/kg	0.004	0.058	0.061	0.003
Fluoranthene	Dry Weight	mg/kg	0.01	0.19	0.40	0.01
Pyrene	Dry Weight	mg/kg	0.02	0.15	0.46	0.01
Benzo(a)anthracene	Dry Weight	mg/kg	<0.01	0.06	0.25	0.01
Chrysene	Dry Weight	mg/kg	<0.05	0.09	0.27	0.05

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1037841
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 5, 2014
	Edmonton, AB, Canada	Location:	Rossdale:Area 6	Date Reported:	Nov 25, 2014
	T5S 1E5	LSD:		Report Number:	1969892
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

	I	Reference Number Sample Date Sample Time	1037841-5 Nov 03, 2014 NA	1037841-6 Nov 03, 2014 NA	1037841-7 Nov 03, 2014 NA	
		Sample Location				
	S	ample Description	A6:14-15 / 6.0 / m	A6:14-16 / 1.5 / m	A6:14-16 / 2.5 / m	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Polycyclic Aromatic Hydr	ocarbons - Soil - Contin	ued				
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	<0.05	0.09	0.34	0.05
Benzo(k)fluoranthene	Dry Weight	mg/kg	<0.05	<0.05	0.16	0.05
Benzo(a)pyrene	Dry Weight	mg/kg	<0.05	<0.05	0.24	0.05
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	<0.05	<0.05	0.15	0.05
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Benzo(g,h,i)perylene	Dry Weight	mg/kg	<0.05	<0.05	0.12	0.05
IACR_Coarse	Index of Additive Cano Risk	cer	<0.001	0.088	0.933	0.001
IACR_Fine	Index of Additive Cano Risk	cer	<0.001	0.168	1.80	0.001
PAH - Soil - Surrogate Re	covery					
Nitrobenzene-d5	PAH - Surrogate	%	99	110	104	23-130
2-Fluorobiphenyl	PAH - Surrogate	%	110	109	110	30-130
p-Terphenyl-d14	PAH - Surrogate	%	101	86	95	18-137

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1037841
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 5, 2014
	Edmonton, AB, Canada	Location:	Rossdale:Area 6	Date Reported:	Nov 25, 2014
	T5S 1E5	LSD:		Report Number:	1969892
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

			4007044 5	4007044 7	4007044.0	
		Reference Number	1037841-5	1037841-7	1037841-8	
		Sample Date	Nov 03, 2014	Nov 03, 2014	Nov 03, 2014	
		Sample Time	NA	NA	NA	
		Sample Location				
		Sample Description	A6:14-15 / 6.0 / m	A6:14-16 / 2.5 / m	A6:14-16 / 4.5 / m	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Salinity						
pН	Saturated Paste	pН	7.8	7.5	7.8	

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1037841
Report To:	Nichols Environmental (Canada) 17331-107 Ave NE	ID: Name:	14-214-CRD Phase II ESA	Control Number: Date Received:	B10683
	Edmonton, AB, Canada T5S 1E5	Location: LSD:	Rossdale:Area 6	Date Reported: Report Number:	Nov 25, 2014
	Tawnya Anderson	P.O.:	14-214-CRD	rioport tumbor.	1000002
Sampled By: Company:		Acct code:			

	F	Reference Number Sample Date Sample Time Sample Location	1037841-8 Nov 03, 2014 NA	1037841-9 Nov 03, 2014 NA	1037841-10 Nov 03, 2014 NA	
	Si	ample Description	A6:14-16 / 4.5 / m	A6:14-16 / 7.5 / m	A6:14-17 / 3.5 / m	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Polycyclic Aromatic Hydr	ocarbons - Soil					2
Naphthalene	Dry Weight	mg/kg	0.019	<0.010	0.015	0.01
Acenaphthylene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Acenaphthene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Fluorene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Phenanthrene	Dry Weight	mg/kg	0.01	<0.01	0.06	0.01
Anthracene	Dry Weight	mg/kg	<0.003	<0.003	0.012	0.003
Fluoranthene	Dry Weight	mg/kg	<0.01	<0.01	0.04	0.01
Pyrene	Dry Weight	mg/kg	<0.01	<0.01	0.04	0.01
Benzo(a)anthracene	Dry Weight	mg/kg	<0.01	<0.01	0.02	0.01
Chrysene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	<0.05	<0.05	0.05	0.05
Benzo(k)fluoranthene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Benzo(a)pyrene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
Benzo(g,h,i)perylene	Dry Weight	mg/kg	<0.05	<0.05	<0.05	0.05
IACR_Coarse	Index of Additive Canc Risk	er	<0.001	<0.001	0.042	0.001
IACR_Fine	Index of Additive Canc Risk	er	<0.001	<0.001	0.080	0.001
PAH - Soil - Surrogate Re	covery					
Nitrobenzene-d5	PAH - Surrogate	%	96	93	106	23-130
2-Fluorobiphenyl	PAH - Surrogate	%	93	94	106	30-130
p-Terphenyl-d14	PAH - Surrogate	%	46	79	95	18-137

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Bill To:	City of Edmonton	Project:		Lot ID:	1037841
Report To:	Nichols Environmental (Canada) 17331-107 Ave NE	ID: Name:	14-214-CRD Phase II ESA	Control Number: Date Received:	B10683
	Edmonton, AB, Canada T5S 1E5	Location: LSD:	Rossdale:Area 6	Date Reported: Report Number:	Nov 25, 2014
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	report rumber.	1000002
Sampled By: Company:		Acct code:			

		rence Number Sample Date Sample Time mple Location	1037841-8 Nov 03, 2014 NA	1037841-10 Nov 03, 2014 NA	1037841-11 Nov 03, 2014 NA	
		le Description	A6:14-16 / 4.5 / m	A6:14-17 / 3.5 / m	A6:14-17 / 5.5 / m	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	29.6	9.56	37.5	0.2
Metals Strong Acid Dig	jestion					
Mercury	Strong Acid Extractable	mg/kg	0.08	0.06	0.06	0.01
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2	0.3	0.2
Arsenic	Strong Acid Extractable	mg/kg	5.9	6.8	4.9	0.2
Barium	Strong Acid Extractable	mg/kg	320	320	1460	1
Beryllium	Strong Acid Extractable	mg/kg	0.7	0.7	2.2	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.25	0.29	0.09	0.01
Chromium	Strong Acid Extractable	mg/kg	14.9	17.5	4.7	0.5
Cobalt	Strong Acid Extractable	mg/kg	8.9	10.0	5.6	0.1
Copper	Strong Acid Extractable	mg/kg	21.7	20.7	12.0	1
Lead	Strong Acid Extractable	mg/kg	16.5	18.3	7.5	5
Molybdenum	Strong Acid Extractable	mg/kg	1.0	<1.0	8.2	1
Nickel	Strong Acid Extractable	mg/kg	23.5	28.9	17.4	0.5
Selenium	Strong Acid Extractable	mg/kg	0.3	0.4	1.2	0.3
Silver	Strong Acid Extractable	mg/kg	0.1	0.2	0.2	0.1
Thallium	Strong Acid Extractable	mg/kg	0.19	0.24	0.17	0.05
Tin	Strong Acid Extractable	mg/kg	1.1	<1.0	2.3	1
Uranium	Strong Acid Extractable	mg/kg	0.9	0.9	4.9	0.5
Vanadium	Strong Acid Extractable	mg/kg	25.7	30.4	17.0	0.1
Zinc	Strong Acid Extractable	mg/kg	53	74	11	1
Barite Soil Analysis						
Barium	Extractable	mg/kg	9.7	28.2	16.2	0.05
Water Soluble Paramet	ters					
Chromium (VI)	Water Soluble	mg/kg	<0.10	<0.10	<0.10	0.1

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1037841
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 5, 2014
	Edmonton, AB, Canada	Location:	Rossdale:Area 6	Date Reported:	Nov 25, 2014
	T5S 1E5	LSD:		Report Number:	1969892
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

		Sample Time	NA	NA	NA	
		Sample Location Sample Description	A6:14-17 / 3.5 / m	A6:14-17 / 5.5 / m	A6:14-17 / 6.5 / m	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Salinity						
pН	Saturated Paste	Hq	8.0	6.2	5.7	

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1037841
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	
	Edmonton, AB, Canada	Location:	Rossdale:Area 6	Date Reported:	,
	T5S 1E5	LSD:		Report Number:	,
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

	R	eference Number Sample Date Sample Time Sample Location	1037841-11 Nov 03, 2014 NA	1037841-12 Nov 03, 2014 NA		
	Sa	mple Description	A6:14-17 / 5.5 / m	A6:14-17 / 6.5 / m		
		Matrix	Soil	Soil		
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Polycyclic Aromatic Hydr	ocarbons - Soil					Linit
Naphthalene	Dry Weight	mg/kg	0.015	0.013		0.01
Acenaphthylene	Dry Weight	mg/kg	<0.05	<0.05		0.05
Acenaphthene	Dry Weight	mg/kg	<0.05	<0.05		0.05
Fluorene	Dry Weight	mg/kg	<0.05	<0.05		0.05
Phenanthrene	Dry Weight	mg/kg	0.03	0.03		0.01
Anthracene	Dry Weight	mg/kg	<0.003	<0.003		0.003
Fluoranthene	Dry Weight	mg/kg	0.01	0.01		0.01
Pyrene	Dry Weight	mg/kg	0.01	0.01		0.01
Benzo(a)anthracene	Dry Weight	mg/kg	<0.01	<0.01		0.01
Chrysene	Dry Weight	mg/kg	<0.05	<0.05		0.05
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	<0.05	<0.05		0.05
Benzo(k)fluoranthene	Dry Weight	mg/kg	<0.05	<0.05		0.05
Benzo(a)pyrene	Dry Weight	mg/kg	<0.05	<0.05		0.05
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	<0.05	<0.05		0.05
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	<0.05	<0.05		0.05
Benzo(g,h,i)perylene	Dry Weight	mg/kg	<0.05	<0.05		0.05
IACR_Coarse	Index of Additive Cance Risk	er	<0.001	<0.001		0.001
IACR_Fine	Index of Additive Cance Risk	er	<0.001	<0.001		0.001
PAH - Soil - Surrogate Re	covery					
Nitrobenzene-d5	PAH - Surrogate	%	100	99		23-130
2-Fluorobiphenyl	PAH - Surrogate	%	106	111		30-130
p-Terphenyl-d14	PAH - Surrogate	%	77	86		18-137

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1037841
Report To:	Nichols Environmental (Canada)		14-214-CRD	Control Number:	B10683
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 5, 2014
	Edmonton, AB, Canada	Location:	Rossdale:Area 6	Date Reported:	Nov 25, 2014
	T5S 1E5	LSD:		Report Number:	1969892
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

	Refe	rence Number Sample Date Sample Time	1037841-12 Nov 03, 2014 NA			
		mple Location le Description	A6:14-17 / 6.5 / m			
		Matrix	Soil			
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	30.9			0.2
Metals Strong Acid Dig	gestion					
Mercury	Strong Acid Extractable	mg/kg	0.06			0.01
Antimony	Strong Acid Extractable	mg/kg	0.3			0.2
Arsenic	Strong Acid Extractable	mg/kg	5.2			0.2
Barium	Strong Acid Extractable	mg/kg	1750			1
Beryllium	Strong Acid Extractable	mg/kg	2.6			0.1
Cadmium	Strong Acid Extractable	mg/kg	0.11			0.01
Chromium	Strong Acid Extractable	mg/kg	5.0			0.5
Cobalt	Strong Acid Extractable	mg/kg	6.5			0.1
Copper	Strong Acid Extractable	mg/kg	13.9			1
Lead	Strong Acid Extractable	mg/kg	8.4			5
Molybdenum	Strong Acid Extractable	mg/kg	3.8			1
Nickel	Strong Acid Extractable	mg/kg	18.6			0.5
Selenium	Strong Acid Extractable	mg/kg	0.8			0.3
Silver	Strong Acid Extractable	mg/kg	0.3			0.1
Thallium	Strong Acid Extractable	mg/kg	0.17			0.05
Tin	Strong Acid Extractable	mg/kg	2.3			1
Uranium	Strong Acid Extractable	mg/kg	4.7			0.5
Vanadium	Strong Acid Extractable	mg/kg	19.7			0.1
Zinc	Strong Acid Extractable	mg/kg	13			1
Barite Soil Analysis						
Barium	Extractable	mg/kg	7.7			0.05
Water Soluble Parame	ters					
Chromium (VI)	Water Soluble	mg/kg	<0.10			0.1

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Bill To:	City of Edmonton	Project:		Lot ID:	1037841
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	
	Edmonton, AB, Canada	Location:	Rossdale:Area 6	Date Reported:) -
	T5S 1E5	LSD:		Report Number:	
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

		Reference Number Sample Date Sample Time	1037841-13 Nov 03, 2014 NA	1037841-14 Nov 03, 2014 NA	1037841-15 Nov 03, 2014 NA	
	:	Sample Location Sample Description Matrix	SPLP Prep / A6:14- 14 / 4.0 / m Water	SPLP Prep / A6:14- 15 / 3.0 / m Water	SPLP Prep / A6:14- 16 / 2.5 / m Water	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Polycyclic Aromatic Hydro	ocarbons - Water					Linin
Naphthalene		ug/L	<0.1	<0.1	<0.1	0.1
Quinoline		ug/L	<0.3	<0.3	<0.3	0.3
Acenaphthylene		ug/L	<0.1	<0.1	<0.1	0.1
Acenaphthene		ug/L	<0.1	<0.1	<0.1	0.1
Fluorene		ug/L	<0.1	<0.1	<0.1	0.1
Phenanthrene		ug/L	<0.1	<0.1	<0.1	0.1
Anthracene		ug/L	<0.005	<0.005	<0.005	0.005
Acridine		ug/L	<0.1	<0.1	<0.1	0.1
Fluoranthene		ug/L	<0.01	<0.01	<0.01	0.01
Pyrene		ug/L	<0.01	<0.01	<0.01	0.01
Benzo(a)anthracene		ug/L	<0.01	<0.01	<0.01	0.01
Chrysene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(b+j)fluoranthene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(k)fluoranthene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(a)pyrene		ug/L	<0.008	<0.008	<0.008	0.008
Indeno(1,2,3-c,d)pyrene		ug/L	<0.05	<0.05	<0.05	0.05
Dibenzo(a,h)anthracene		ug/L	<0.05	<0.05	<0.05	0.05
Benzo(g,h,i)perylene		ug/L	<0.05	<0.05	<0.05	0.05
CB(a)P	Carcinogenic Potenc Equivalent		<0.01	<0.01	<0.01	.01
PAH - Water - Surrogate R	ecovery					
Nitrobenzene-d5	PAH - Surrogate	%	80	100	100	23-130
2-Fluorobiphenyl	PAH - Surrogate	%	80	90	90	30-130
p-Terphenyl-d14	PAH - Surrogate	%	80	80	90	18-137

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To:	City of Edmonton	Project:		Lot ID:	1037841
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	
	Edmonton, AB, Canada	Location:	Rossdale:Area 6	Date Reported:	
	T5S 1E5	LSD:		Report Number:	,
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		1000002
Sampled By:	НВ	Acct code:			
Company:	NECL				

		Reference Number Sample Date Sample Time Sample Location Sample Description Matrix	1037841-16 Nov 03, 2014 NA SPLP Prep / A6:14- 17 / 3.5 / m Water			
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Polycyclic Aromatic Hydro	ocarbons - Water					
Naphthalene		ug/L	<0.1			0.1
Quinoline		ug/L	<0.3			0.3
Acenaphthylene		ug/L	<0.1			0.1
Acenaphthene		ug/L	<0.1			0.1
Fluorene		ug/L	<0.1			0.1
Phenanthrene		ug/L	<0.1			0.1
Anthracene		ug/L	<0.005			0.005
Acridine		ug/L	<0.1			0.1
Fluoranthene		ug/L	<0.01			0.01
Pyrene		ug/L	0.01			0.01
Benzo(a)anthracene		ug/L	<0.01			0.01
Chrysene		ug/L	<0.1			0.1
Benzo(b+j)fluoranthene		ug/L	<0.1			0.1
Benzo(k)fluoranthene		ug/L	<0.1			0.1
Benzo(a)pyrene		ug/L	<0.008			0.008
Indeno(1,2,3-c,d)pyrene		ug/L	<0.05			0.05
Dibenzo(a,h)anthracene		ug/L	<0.05			0.05
Benzo(g,h,i)perylene		ug/L	<0.05			0.05
CB(a)P	Carcinogenic Potenc Equivalent	y ug/L	<0.01			.01
PAH - Water - Surrogate R	ecovery					
Nitrobenzene-d5	PAH - Surrogate	%	100			23-130
2-Fluorobiphenyl	PAH - Surrogate	%	90			30-130
p-Terphenyl-d14	PAH - Surrogate	%	80			18-137

Anthony Weuman

Approved by: Anthony Neumann, MSc

Laboratory Operations Manager

Data have been validated by Analytical Quality Control and Exova's Integrated Data Validation System (IDVS). Generation and distribution of the report, and approval by the digitized signature above, are performed through a secure and controlled automatic process.

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Methodology and Notes

Bill To: City of Edmonton	Project:		Lot ID:	1037841
Report To: Nichols Environmental (Ca	anada) ID:	14-214-CRD	Control Number:	
17331-107 Ave NE	Name:	Phase II ESA	Date Received:	
Edmonton, AB, Canada	Location:	Rossdale:Area 6	Date Reported:	, -
T5S 1E5	LSD:		Report Number:	,
Attn: Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By: HB	Acct code:			
Company: NECL				

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
1:5 Water Soluble Extraction	McKeague	* Soluble Salts in Extracts of 1:5 Soil:Water Mixtures, 3.23	07-Nov-14	Exova Edmonton
1:5 Water Soluble Extraction	McKeague	* Soluble Salts in Extracts of 1:5 Soil:Water Mixtures, 3.23	10-Nov-14	Exova Edmonton
Barium (Extractable) in soil (0.1 M CaCl2)	Ab Env	Analytical Method for Extractable Barium, 6.6.2	07-Nov-14	Exova Edmonton
Barium (Extractable) in soil (0.1 M CaCl2)	Ab Env	Analytical Method for Extractable Barium, 6.6.2	10-Nov-14	Exova Edmonton
Boron in general soil	McKeague	 * Hot Water Soluble Boron - Azomethine-H Method, 4.61 	06-Nov-14	Exova Edmonton
Boron in general soil	McKeague	 * Hot Water Soluble Boron - Azomethine-H Method, 4.61 	10-Nov-14	Exova Edmonton
Mercury (Hot Block) in Soil	US EPA	* Determination of Hg in Sediment by Cold Vapor Atomic Absorption Spec, 245.5	07-Nov-14	Exova Edmonton
Mercury (Hot Block) in Soil	US EPA	* Determination of Hg in Sediment by Cold Vapor Atomic Absorption Spec, 245.5	10-Nov-14	Exova Edmonton
Metals ICP-MS (Hot Block) in soil	SW-846	 * Acid Digestion of Sediments, Sludges, and Soils, EPA 3050B 	07-Nov-14	Exova Edmonton
Metals ICP-MS (Hot Block) in soil	SW-846	 * Acid Digestion of Sediments, Sludges, and Soils, EPA 3050B 	10-Nov-14	Exova Edmonton
PAH - Soil	AESRD	Index of Additive Cancer Risk (IACR), PAHs	07-Nov-14	Exova Calgary
PAH - Soil	US EPA	 * Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry, 8270 	07-Nov-14	Exova Calgary
PAH - Water	AESRD	Carcinogenic PAHs Toxic Potency Equivalence (as B(a)P TPE), PAHw	24-Nov-14	Exova Calgary
PAH - Water	US EPA	 * Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry, 8270 	24-Nov-14	Exova Calgary
Particle Size by Wet Sieve	ASTM	 * Standard Test Method for Materials Finer than 75-um (No. 200) Sieve in Mineral Aggregates by Washing, C 117-04 	06-Nov-14	Exova Edmonton
Particle Size by Wet Sieve	ASTM	 * Standard Test Method for Materials Finer than 75-um (No. 200) Sieve in Mineral Aggregates by Washing, C 117-04 	20-Nov-14	Exova Edmonton
Saturated Paste in General Soil	Carter	 * Electrical Conductivity and Soluble lons, Chapter 15 	07-Nov-14	Exova Edmonton
		* Reference Method Modified		

AESRDAlberta Tier 1 Soil and Groundwater Remediation GuidelinesMcKeagueManual on Soil Sampling and Methods of AnalysisCarterSoil Sampling and Methods of Analysis.SW-846Test Methods for Evaluating Solid Waste

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Methodology and Notes

	City of Edmonton Nichols Environmental (Canada) 17331-107 Ave NE Edmonton, AB, Canada T5S 1E5	Project: ID: Name: Location: LSD:	14-214-CRD Phase II ESA Rossdale:Area 6	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Nov 5, 2014 Nov 25, 2014
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	Report Number.	1909092
Sampled By:	HB	Acct code:			
Company:	NECL				

US EPA	US Environmental Protection Agency Test Methods
APHA	Standard Methods for the Examination of Water and Wastewater
Ab Env	Alberta Environment, Soil Quality Guidelines for Barite

Comments:

- Report was issued to include addition of SPLP leachate and PAH1 analysis on the resultant leachate as requested by Tami Dolen of the City of Edmonton on November 18, 2014. Previous report 1966630.
- Report was issued to include addition of PS24 analysis on sample #1 requested by Tawnya Anderson of Nichols Environmental on November 19, 2014. Previous report 1966630.

	Testing Advising	Billing Infor			Copy of	Rep	ort	ſo:			-1 =	all.		RU	SH Priority	
	Assuring	Company: Address:	Nichels F 17331-107		Company Address:	1				-			-	Upon filling out this	s section, client accepts to be applied to the analysis	
			Ecim, Ar										-	Date Required		
11817 01		Attention:	T. Anders		Attention:									As Indicated	All Analysis	
roject Name: Prose T		Phone:	780-484-	-3377	Phone:											
roject Location: <u>Reservab</u>	: Areg 6	Cell:			Cell:									to a 100% RUSH p	ested, turn around will defa riority, with pricing and turn	
gal Location:		Fax:			Fax:									around time to match. Please contact the lab plant of the lab plant in the lab plant is submitting RUSH samples.		
D/AFE#: 14-214-CF	50	E-mail:			E-mail:											
oj. Acct. Code:		Agreement ID:												Signature		
VÉ-mail	lo re	Copy of repor	t		Copy of in	voice	e:							Sample Cus	tody (please print)	
eport Results Mail	Online Fax	PDF		DA/QC1	Report										IB	
ecial Instructions/Comments (pleas	1	Excel						.1	1	1					ECL	
ferent from above).	se include conta	actiniormation	including ph. # if	Include Re	egulatory				I authorize Exova to proceed with the work indicat							
0	-			Requiremen	its Below:	ntair		4						Date: NOD. 51 Unitial: -A		
Please Dill us	ing Cr	ty of F	Edmoniton			PAHA PAHA PBINNET-S PH PA			This section for Lab use only							
Please bill us rates.	5	1 -				er of	I	ARTIN		t			1	Date/Time stamp:	and the second sec	
						mbe	DD	E	I	8						
	_		1			N	0	đ	0	a			4	NDU 5:	a Exit	
Sample Identification	Location	Depth IN CM M	Date/Time sample	ed Matrix	Sampling Method	1		11	Ente	r tes	ts abo	ve below)		Indicate below any	deficiencies in the	
Alo: 14-14		35	Nov: 3/14	soil		Ť	-			T	110100	Scienty	-	condition of sample		
A6:14-14		4.0	1-compt	an	gmb	1	V						-		Were Exova supplies used?	
Alo: 14-14		5.0				-	\diamond	~				-	-		10. 0	
A6:14-15		3.0				3	X		2				-		Was there any damage the shipping container	
A6:14-15		6.0				2	Ý	X	2	-			-			
A6:14-16		1.5				à	X	X	~				-		Woro the easter	
Ala:14-16		2.5				2	X	X	X	+			-		Were the containers packaged well?	
A614-16		4.5				â	×	X	1	1 Miles	+ +	_	-			
Ale: 14-110		7.5				T	V	-	0	7-	+		-		Wors any average	
A6-14-17		3.5				2	X	×	X	1			-		Were any extra sample received (document	
A6-14-17		5.5	~	V	V	ã		X	€+	+-	+-+		-		below)?	
A6-14-17		6.5	V	J.	1	+ 5	1	V	V	+-	+	-	-		-	
								-		-	-	_	-		Are samples within	
						-	1	-		-		-	-		-recommended holding	
							-	-		-		-	-		times/temp?	
Environmental :	Sample Inform	nation Sheet		ndicate lot numb	er or affix lot	labe	I her	e:	-	-	Ship	ping:	-	# and size of coolers re	aceived.	
Note: Proper completion of this for	m is required in	order to procee	ed with analysis								COD				CARGE MILLO	
Please indicate any	potentially haz	zardous samp	les	10	200	15	1				1 million 1			Dolivon Mathe	the second second	
e of	Control	# B 106	83	10	1378	4	1				11	er temp	5	Delivery Method:		
					10 M						IV) ~		Waybill:		
			The second se	the second se		-					1 1 1	1		MECEIVED DV		

ED 120-00

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Report Transmission Cover Page

Bill To:	City of Edmonton	Project:		Lot ID:	1040609
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	
	Edmonton, AB, Canada	Location:	Rossdale: Area 1	Date Reported:	
	T5S 1E5	LSD:		Report Number:	
Attn:	Tawnya Anderson	P.O.:	D913127A, C#14-214-CRD		1070021
Sampled By:	HB	Acct code:			
Company:	NECL				

Contact & Affiliation	Address	Delivery Commitments
Tawnya Anderson	17331-107 Ave NE	On [Lot Verification] send
Nichols Environmental (Can	ada) Ltd Edmonton, Alberta T5S 1E5 Phone: (780) 484-3377 Fax: (780) 484-5093 Email:	(COA) by Email - Merge Reports On [Report Approval] send (COC, Test Report) by Email - Merge Reports
Kelly Goetz Nichols Environmental (Can	17331-107 Ave NE aada) Ltd Edmonton, Alberta T5S 1E5 Phone: (780) 484-3377 Fax: (780) 484-5093 Email	On [Lot Approval and Final Test Report Approval] send (Invoice) by Email - Merge Reports

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1040609
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	
	Edmonton, AB, Canada	Location:	Rossdale: Area 1	Date Reported:	Nov 26, 2014
	T5S 1E5	LSD:		Report Number:	1970621
Attn:	Tawnya Anderson	P.O.:	D913127A, C#14-214-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

		Reference Number Sample Date Sample Time Sample Location sample Description Sample Matrix	1040609-1 November 1 NA A1: 14-18 / ⁻ Soil			
Analyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
Hot Water Soluble		Units	NESUR	Linn	Liiiik	O Oninionte
Boron	Hot Water Soluble	ma/ka	1.43	0.2		
Metals Strong Acid Di		mg/kg	1.40	0.2		
-	-			0.04		
Mercury	Strong Acid	mg/kg	3.8	0.01		
Antimony	Extractable Strong Acid	mg/kg	0.2	0.2		
Antimony	Extractable	iiig/ikg	0.2	0.2		
Arsenic	Strong Acid	mg/kg	4.4	0.2		
	Extractable	5.5		-		
Barium	Strong Acid	mg/kg	166	1		
	Extractable					
Beryllium	Strong Acid	mg/kg	0.5	0.1		
	Extractable					
Cadmium	Strong Acid	mg/kg	0.19	0.01		
Oh an an is see	Extractable		40.4	0.5		
Chromium	Strong Acid Extractable	mg/kg	12.4	0.5		
Cobalt	Strong Acid	mg/kg	6.6	0.1		
ooban	Extractable	ing/kg	0.0	0.1		
Copper	Strong Acid	mg/kg	13.1	1		
	Extractable	0.0				
Lead	Strong Acid	mg/kg	25.3	5		
	Extractable					
Molybdenum	Strong Acid	mg/kg	<1.0	1		
N (1) (1)	Extractable		47.0	o F		
Nickel	Strong Acid	mg/kg	17.8	0.5		
Selenium	Extractable Strong Acid	mg/kg	0.3	0.3		
Generilutti	Extractable	шу/ку	0.3	0.0		
Silver	Strong Acid	mg/kg	0.1	0.1		
	Extractable		0.1	5.1		
Thallium	Strong Acid	mg/kg	0.13	0.05		
	Extractable					
Tin	Strong Acid	mg/kg	1.7	1		
	Extractable					
Uranium	Strong Acid	mg/kg	0.8	0.5		
Vanadium	Extractable	mallea	21.0	0.4		
Vanadium	Strong Acid	mg/kg	21.0	0.1		
Zinc	Extractable Strong Acid	mg/kg	49	1		
	Extractable	iiiy/ky	υ	'		
Nater Soluble Parame						
Chromium (VI)	Water Soluble	mg/kg	<0.10	0.1		

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Report To:	17331-107 Ave NE Edmonton, AB, Canada T5S 1E5 Tawnya Anderson HB	Project: ID: Name: Location: LSD: P.O.: Acct code:	14-214-CRD Phase II ESA Rossdale: Area 1 D913127A, C#14-214-CRD	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Nov 20, 2014 Nov 26, 2014
------------	--	--	--	--	------------------------------

		Reference Number	1040609-1			
		Sample Date	November 19, 2014			
		Sample Time	NA			
		Sample Location				
		Sample Description	A1: 14-18 /	1.0 / m		
		Sample Matrix	Soil			
Analyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
Barite Soil Analysis						
Barium	Extractable	mg/kg	20.1	0.05		

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

	City of Edmonton Nichols Environmental (Canada) 17331-107 Ave NE Edmonton, AB, Canada T5S 1E5	Project: ID: Name: Location: LSD:	14-214-CRD Phase II ESA Rossdale: Area 1	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Nov 20, 2014 Nov 26, 2014
Attn: Sampled By: Company:		P.O.: Acct code:	D913127A, C#14-214-CRD		

	Sa Samp	rence Number Sample Date Sample Time mple Location le Description	1040609-2 November 1 NA A1: 14-18 / 1			
		Sample Matrix	Soil	Nominal Datastian	Cuidalina	Cuidalina
nalyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
ot Water Soluble						
Boron	Hot Water Soluble	mg/kg	0.78	0.2		
letals Strong Acid Dig		5 5				
Mercury	Strong Acid	mg/kg	0.06	0.01		
liorodity	Extractable	ing/ng	0.00	0.01		
Antimony	Strong Acid	mg/kg	<0.2	0.2		
-	Extractable	0.0				
Arsenic	Strong Acid	mg/kg	5.8	0.2		
	Extractable					
Barium	Strong Acid	mg/kg	151	1		
	Extractable					
Beryllium	Strong Acid	mg/kg	0.4	0.1		
	Extractable		0.47	0.04		
Cadmium	Strong Acid	mg/kg	0.17	0.01		
Chromium	Extractable	ma/ka	13.4	0.5		
IIIOIIIIUIII	Strong Acid Extractable	mg/kg	13.4	0.5		
Cobalt	Strong Acid	mg/kg	8.3	0.1		
Joban	Extractable	iiig/iig	0.0	0.1		
Copper	Strong Acid	mg/kg	12.4	1		
	Extractable					
_ead	Strong Acid	mg/kg	7.6	5		
	Extractable					
Volybdenum	Strong Acid	mg/kg	<1.0	1		
	Extractable					
Nickel	Strong Acid	mg/kg	20.0	0.5		
	Extractable	r.		• -		
Selenium	Strong Acid	mg/kg	0.3	0.3		
Pilvor	Extractable	m m/l	0.4	0.4		
Silver	Strong Acid	mg/kg	0.1	0.1		
Thallium	Extractable Strong Acid	mg/kg	0.15	0.05		
mailum	Extractable	iiig/Kg	0.15	0.05		
Гin	Strong Acid	mg/kg	1.6	1		
	Extractable		1.0			
Jranium	Strong Acid	mg/kg	0.7	0.5		
	Extractable	0.0				
/anadium	Strong Acid	mg/kg	25.2	0.1		
	Extractable					
Zinc	Strong Acid	mg/kg	42	1		
	Extractable					
olycyclic Aromatic Hy						
laphthalene	Dry Weight	mg/kg	0.010	0.01		

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Bill To:	City of Edmonton	Project:		Lot ID:	1040609
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 20, 2014
	Edmonton, AB, Canada	Location:	Rossdale: Area 1	Date Reported:	Nov 26, 2014
	T5S 1E5	LSD:		Report Number:	1970621
Attn:	Tawnya Anderson	P.O.:	D913127A, C#14-214-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

	Sample Date Sample Time Sample Location Sample Description		November 19, 2014 NA A1: 14-18 / 1.5 / m					
		• •	Soil					
		Sample Matrix	501	Nominal Detection	Guideline	Guideline		
Analyte		Units	Result	Limit	Limit	Comments		
Polycyclic Aromatic Hyd	rocarbons - Soil - (Continued						
Acenaphthylene	Dry Weight	mg/kg	<0.05	0.05				
Acenaphthene	Dry Weight	mg/kg	<0.05	0.05				
Fluorene	Dry Weight	mg/kg	<0.05	0.05				
Phenanthrene	Dry Weight	mg/kg	0.03	0.01				
Anthracene	Dry Weight	mg/kg	<0.003	0.003				
Fluoranthene	Dry Weight	mg/kg	<0.01	0.01				
Pyrene	Dry Weight	mg/kg	<0.01	0.01				
Benzo(a)anthracene	Dry Weight	mg/kg	<0.01	0.01				
Chrysene	Dry Weight	mg/kg	<0.05	0.05				
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	<0.05	0.05				
Benzo(k)fluoranthene	Dry Weight	mg/kg	<0.05	0.05				
Benzo(a)pyrene	Dry Weight	mg/kg	<0.05	0.05				
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	<0.05	0.05				
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	<0.05	0.05				
Benzo(g,h,i)perylene	Dry Weight	mg/kg	<0.05	0.05				
IACR_Coarse	Index of Additive Cancer Risk		<0.001	0.001				
IACR_Fine	Index of Additive Cancer Risk		<0.001	0.001				
Water Soluble Parameter								
Chromium (VI)	Water Soluble	mg/kg	<0.10	0.1				
PAH - Soil - Surrogate Re	•							
Nitrobenzene-d5	PAH - Surrogate	%	94	23-130				
2-Fluorobiphenyl	PAH - Surrogate	%	99	30-130				
p-Terphenyl-d14	PAH - Surrogate	%	87	18-137				
Barite Soil Analysis								
Barium	Extractable	mg/kg	18.5	0.05				

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

	City of Edmonton Nichols Environmental (Canada) 17331-107 Ave NE Edmonton, AB, Canada T5S 1E5	Project: ID: Name: Location: LSD:	14-214-CRD Phase II ESA Rossdale: Area 1	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Nov 20, 2014 Nov 26, 2014
Attn: Sampled By: Company:		P.O.: Acct code:	D913127A, C#14-214-CRD		

	Sa	erence Number Sample Date Sample Time ample Location ole Description Sample Matrix	1040609-3 November 1 NA A1: 14-19 / 1 Soil			
nalyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
lot Water Soluble		Units	Result			
Boron	Hot Water Soluble	mg/kg	0.44	0.2		
letals Strong Acid Dig		iiig/kg	0.44	0.2		
		malle	0.20	0.04		
Mercury	Strong Acid Extractable	mg/kg	0.39	0.01		
Antimony	Strong Acid	mg/kg	<0.2	0.2		
and thory	Extractable	iiig/kg	NU.2	0.2		
Arsenic	Strong Acid	mg/kg	3.3	0.2		
-	Extractable	3.13				
Barium	Strong Acid	mg/kg	104	1		
	Extractable					
Beryllium	Strong Acid	mg/kg	0.3	0.1		
	Extractable					
Cadmium	Strong Acid	mg/kg	0.11	0.01		
	Extractable					
Chromium	Strong Acid	mg/kg	6.4	0.5		
Cabalt	Extractable	maller	4.0	0.1		
Cobalt	Strong Acid Extractable	mg/kg	4.9	0.1		
Copper	Strong Acid	mg/kg	6.1	1		
Jopper	Extractable	iiig/kg	0.1	I		
_ead	Strong Acid	mg/kg	<5.0	5		
	Extractable			-		
Volybdenum	Strong Acid	mg/kg	<1.0	1		
	Extractable					
Nickel	Strong Acid	mg/kg	11.3	0.5		
	Extractable					
Selenium	Strong Acid	mg/kg	0.4	0.3		
D'I	Extractable		<u> </u>	0.4		
Silver	Strong Acid	mg/kg	<0.1	0.1		
Thallium	Extractable	malle	0.4	0.05		
nailluitt	Strong Acid Extractable	mg/kg	0.1	0.05		
Tin	Strong Acid	mg/kg	2.2	1		
	Extractable		2.2	ı		
Jranium	Strong Acid	mg/kg	0.6	0.5		
	Extractable	0.0		-		
/anadium	Strong Acid	mg/kg	13.6	0.1		
	Extractable					
Zinc	Strong Acid	mg/kg	22	1		
	Extractable					
olycyclic Aromatic Hy						
laphthalene	Dry Weight	mg/kg	<0.010	0.01		

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Bill To:	City of Edmonton	Project:		Lot ID:	1040609
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 20, 2014
	Edmonton, AB, Canada	Location:	Rossdale: Area 1	Date Reported:	Nov 26, 2014
	T5S 1E5	LSD:		Report Number:	1970621
Attn:	Tawnya Anderson	P.O.:	D913127A, C#14-214-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

		Reference Number Sample Date Sample Time Sample Location	1040609-3 November 19 NA			
		Sample Description	A1: 14-19 / 1	.0 / m		
		Sample Matrix	Soil	New in al Defendion	Quildelling	Quidellas
Analyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
Polycyclic Aromatic Hydi	rocarbons - Soil -	Continued				
Acenaphthylene	Dry Weight	mg/kg	<0.05	0.05		
Acenaphthene	Dry Weight	mg/kg	<0.05	0.05		
Fluorene	Dry Weight	mg/kg	<0.05	0.05		
Phenanthrene	Dry Weight	mg/kg	<0.01	0.01		
Anthracene	Dry Weight	mg/kg	<0.003	0.003		
Fluoranthene	Dry Weight	mg/kg	<0.01	0.01		
Pyrene	Dry Weight	mg/kg	0.02	0.01		
Benzo(a)anthracene	Dry Weight	mg/kg	<0.01	0.01		
Chrysene	Dry Weight	mg/kg	<0.05	0.05		
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	<0.05	0.05		
Benzo(k)fluoranthene	Dry Weight	mg/kg	<0.05	0.05		
Benzo(a)pyrene	Dry Weight	mg/kg	<0.05	0.05		
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	<0.05	0.05		
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	<0.05	0.05		
Benzo(g,h,i)perylene	Dry Weight	mg/kg	<0.05	0.05		
IACR_Coarse	Index of Additive Cancer Risk		<0.001	0.001		
IACR_Fine	Index of Additive Cancer Risk		<0.001	0.001		
Water Soluble Parameter	s					
Chromium (VI)	Water Soluble	mg/kg	<0.10	0.1		
PAH - Soil - Surrogate Re	•					
Nitrobenzene-d5	PAH - Surrogate		93	23-130		
2-Fluorobiphenyl	PAH - Surrogate		106	30-130		
p-Terphenyl-d14	PAH - Surrogate	%	92	18-137		
Barite Soil Analysis						
Barium	Extractable	mg/kg	24.7	0.05		

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Analytical Report

	City of Edmonton Nichols Environmental (Canada) 17331-107 Ave NE	Name:	14-214-CRD Phase II ESA	Lot ID: Control Number: Date Received:	
Attn: Sampled By: Company:		Location: LSD: P.O.: Acct code:	Rossdale: Area 1 D913127A, C#14-214-CRD	Date Reported: Report Number:	

	Sa Samp	rence Number Sample Date Sample Time mple Location le Description Sample Matrix	1040609-4 November 1 NA A1: 14-19 / 1 Soil			
				Nominal Detection	Guideline	Guideline
nalyte		Units	Result	Limit	Limit	Comments
lot Water Soluble						
Boron	Hot Water Soluble	mg/kg	0.69	0.2		
letals Strong Acid Dig	jestion					
Mercury	Strong Acid Extractable	mg/kg	0.06	0.01		
Antimony	Strong Acid Extractable	mg/kg	<0.2	0.2		
Arsenic	Strong Acid Extractable	mg/kg	6.7	0.2		
Barium	Strong Acid Extractable	mg/kg	108	1		
Beryllium	Strong Acid Extractable	mg/kg	0.4	0.1		
Cadmium	Strong Acid Extractable	mg/kg	0.15	0.01		
Chromium	Strong Acid Extractable	mg/kg	11.5	0.5		
Cobalt	Strong Acid Extractable	mg/kg	7.1	0.1		
Copper	Strong Acid Extractable	mg/kg	10.2	1		
Lead	Strong Acid Extractable	mg/kg	6.4	5		
Molybdenum	Strong Acid Extractable	mg/kg	<1.0	1		
Nickel	Strong Acid Extractable	mg/kg	17.2	0.5		
Selenium	Strong Acid Extractable	mg/kg	<0.3	0.3		
Silver	Strong Acid Extractable	mg/kg	0.1	0.1		
Thallium	Strong Acid Extractable	mg/kg	0.12	0.05		
Tin	Strong Acid Extractable	mg/kg	1.9	1		
Jranium	Strong Acid Extractable	mg/kg	0.6	0.5		
/anadium	Strong Acid Extractable	mg/kg	21.7	0.1		
Zinc	Strong Acid Extractable	mg/kg	35	1		
ater Soluble Paramet						
Chromium (VI)	Water Soluble	mg/kg	<0.10	0.1		

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Report To:	17331-107 Ave NE Edmonton, AB, Canada T5S 1E5	Name: Location: LSD:	14-214-CRD Phase II ESA Rossdale: Area 1	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Nov 20, 2014 Nov 26, 2014
Attn: Sampled By: Company:		P.O.: Acct code:	D913127A, C#14-214-CRD		

		Reference Number	1040609-4			
		Sample Date	November 1	9, 2014		
		Sample Time	NA			
		Sample Location				
		Sample Description	A1: 14-19 / [/]	1.5 / m		
		Sample Matrix	Soil			
Analyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
Barite Soil Analysis						
Barium	Extractable	mg/kg	20.3	0.05		

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Report To:	17331-107 Ave NE Edmonton, AB, Canada T5S 1E5 Tawnya Anderson HB	Project: ID: Name: Location: LSD: P.O.: Acct code:	14-214-CRD Phase II ESA Rossdale: Area 1 D913127A, C#14-214-CRD	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Nov 20, 2014 Nov 26, 2014
------------	--	--	--	--	------------------------------

		Reference Number	1040609-5			
		Sample Date	November 19	, 2014		
		Sample Time	NA			
		Sample Location				
		Sample Description	A1: 14-19 / 2.	0 / m		
		Sample Matrix	Soil			
				Nominal Detection	Guideline	Guideline
Analyte		Units	Result	Limit	Limit	Comments
Particle Size Analysis	- Wet Sieve					
Texture			Fine-Grained			
75 micron sieve	% Retained	% by weight	12.7	0.1		

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1040609
Report To:	Nichols Environmental (Canada) 17331-107 Ave NE	ID: Name:	14-214-CRD Phase II ESA	Control Number: Date Received:	B10684
	Edmonton, AB, Canada T5S 1E5	Location: LSD:	Rossdale: Area 1	Date Reported: Report Number:	
Attn: Sampled By: Company:		P.O.: Acct code:	D913127A, C#14-214-CRD		

		Reference Number Sample Date Sample Time Sample Location	1040609-6 November 1 NA	9, 2014		
	\$	Sample Description Sample Matrix	A1: 14-20 / ′ Soil	1.0 / m		
nalyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
ot Water Soluble		•				
Boron	Hot Water Soluble	mg/kg	5.90	0.2		
etals Strong Acid Di		iiig/kg	5.50	0.2		
-	•		0.04	0.04		
Mercury	Strong Acid	mg/kg	0.04	0.01		
Antimony	Extractable Strong Acid	mg/kg	<0.2	0.2		
ananiony	Extractable	iiig/kg	NU.2	0.2		
Arsenic	Strong Acid	mg/kg	6.4	0.2		
	Extractable			•		
Barium	Strong Acid	mg/kg	217	1		
	Extractable					
Beryllium	Strong Acid	mg/kg	0.7	0.1		
	Extractable					
Cadmium	Strong Acid	mg/kg	0.27	0.01		
	Extractable					
Chromium	Strong Acid	mg/kg	17.7	0.5		
	Extractable		40.4			
Cobalt	Strong Acid	mg/kg	10.4	0.1		
Connor	Extractable	mallea	17.0	4		
Copper	Strong Acid Extractable	mg/kg	17.2	1		
ead	Strong Acid	mg/kg	11.9	5		
.000	Extractable	iiig/ikg	11.5	0		
/lolybdenum	Strong Acid	mg/kg	<1.0	1		
,	Extractable	5 5	-			
Nickel	Strong Acid	mg/kg	24.6	0.5		
	Extractable					
Selenium	Strong Acid	mg/kg	0.6	0.3		
	Extractable					
Silver	Strong Acid	mg/kg	0.2	0.1		
	Extractable			a		
Thallium	Strong Acid	mg/kg	0.18	0.05		
Tin	Extractable	~~//~~	A E	1		
- Tin	Strong Acid Extractable	mg/kg	1.5	1		
Jranium	Strong Acid	mg/kg	0.8	0.5		
	Extractable	iiig/kg	0.0	0.0		
/anadium	Strong Acid	mg/kg	31.5	0.1		
	Extractable		01.0	5.1		
Zinc	Strong Acid	mg/kg	64	1		
	Extractable	5.5				
olycyclic Aromatic H	lydrocarbons - Soil					

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

	City of Edmonton Nichols Environmental (Canada) 17331-107 Ave NE Edmonton, AB, Canada T5S 1E5	Project: ID: Name: Location: LSD:	14-214-CRD Phase II ESA Rossdale: Area 1	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Nov 20, 2014 Nov 26, 2014
Attn:	Tawnya Anderson	P.O.:	D913127A, C#14-214-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

		Reference Number Sample Date Sample Time Sample Location	1040609-6 November 19 NA	9, 2014		
		Sample Description	A1: 14-20 / 1	.0 / m		
		Sample Matrix	Soil			
			_	Nominal Detection	Guideline	Guideline
Analyte		Units	Result	Limit	Limit	Comments
Polycyclic Aromatic Hydi						
Acenaphthylene	Dry Weight	mg/kg	<0.05	0.05		
Acenaphthene	Dry Weight	mg/kg	<0.05	0.05		
Fluorene	Dry Weight	mg/kg	<0.05	0.05		
Phenanthrene	Dry Weight	mg/kg	0.03	0.01		
Anthracene	Dry Weight	mg/kg	0.007	0.003		
Fluoranthene	Dry Weight	mg/kg	0.02	0.01		
Pyrene	Dry Weight	mg/kg	0.02	0.01		
Benzo(a)anthracene	Dry Weight	mg/kg	<0.01	0.01		
Chrysene	Dry Weight	mg/kg	<0.05	0.05		
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	<0.05	0.05		
Benzo(k)fluoranthene	Dry Weight	mg/kg	<0.05	0.05		
Benzo(a)pyrene	Dry Weight	mg/kg	<0.05	0.05		
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	<0.05	0.05		
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	<0.05	0.05		
Benzo(g,h,i)perylene	Dry Weight	mg/kg	<0.05	0.05		
IACR_Coarse	Index of Additive Cancer Risk		<0.001	0.001		
IACR_Fine	Index of Additive Cancer Risk		<0.001	0.001		
Water Soluble Parameter	s					
Chromium (VI)	Water Soluble	mg/kg	<0.10	0.1		
PAH - Soil - Surrogate Re	covery					
Nitrobenzene-d5	PAH - Surrogate	%	94	23-130		
2-Fluorobiphenyl	PAH - Surrogate	%	108	30-130		
p-Terphenyl-d14	PAH - Surrogate	%	96	18-137		
Barite Soil Analysis						
Barium	Extractable	mg/kg	21.9	0.05		

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1040609
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 20, 2014
	Edmonton, AB, Canada	Location:	Rossdale: Area 1	Date Reported:	Nov 26, 2014
	T5S 1E5	LSD:		Report Number:	1970621
Attn:	Tawnya Anderson	P.O.:	D913127A, C#14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

		Reference Number Sample Date Sample Time Sample Location	1040609-7 November 1 NA	9, 2014		
	5	Sample Description	A1: 14-20 /	1.5 / m		
		Sample Matrix	Soil			
Analyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
Hot Water Soluble						
Boron	Hot Water Soluble	e mg/kg	3.96	0.2		
Metals Strong Acid Di	gestion					
Mercury	Strong Acid Extractable	mg/kg	0.04	0.01		
Antimony	Strong Acid Extractable	mg/kg	<0.2	0.2		
Arsenic	Strong Acid Extractable	mg/kg	5.1	0.2		
Barium	Strong Acid Extractable	mg/kg	129	1		
Beryllium	Strong Acid Extractable	mg/kg	0.5	0.1		
Cadmium	Strong Acid Extractable	mg/kg	0.17	0.01		
Chromium	Strong Acid Extractable	mg/kg	12.0	0.5		
Cobalt	Strong Acid Extractable	mg/kg	7.4	0.1		
Copper	Strong Acid Extractable	mg/kg	10.7	1		
Lead	Strong Acid Extractable	mg/kg	7.0	5		
Molybdenum	Strong Acid Extractable	mg/kg	<1.0	1		
Nickel	Strong Acid Extractable	mg/kg	18.5	0.5		
Selenium	Strong Acid Extractable	mg/kg	<0.3	0.3		
Silver	Strong Acid Extractable	mg/kg	0.1	0.1		
Thallium	Strong Acid Extractable	mg/kg	0.13	0.05		
Fin	Strong Acid Extractable	mg/kg	1.8	1		
Jranium	Strong Acid Extractable	mg/kg	0.6	0.5		
/anadium	Strong Acid Extractable	mg/kg	21.8	0.1		
	Strong Acid Extractable	mg/kg	36	1		
Vater Soluble Parame				_		
Chromium (VI)	Water Soluble	mg/kg	<0.10	0.1		

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

	City of Edmonton Nichols Environmental (Canada) 17331-107 Ave NE Edmonton, AB, Canada T5S 1E5	Project: ID: Name: Location: LSD:	14-214-CRD Phase II ESA Rossdale: Area 1	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Nov 20, 2014 Nov 26, 2014
Sampled By:		P.O.: Acct code:	D913127A, C#14-214-CRD		

		Reference Number	1040609-7			
		Sample Date	November 1	9, 2014		
		Sample Time	NA			
		Sample Location				
		Sample Description	A1: 14-20 /	1.5 / m		
		Sample Matrix	Soil			
Analyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
Barite Soil Analysis						
Barium	Extractable	mg/kg	23.8	0.05		

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Analytical Report

Bill To:	City of Edmonton	Project:		Lot ID:	1040609
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 20, 2014
	Edmonton, AB, Canada	Location:	Rossdale: Area 1	Date Reported:	Nov 26, 2014
	T5S 1E5	LSD:		Report Number:	1970621
Attn:	Tawnya Anderson	P.O.:	D913127A, C#14-214-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

		Reference Number Sample Date Sample Time Sample Location	1040609-8 November 19 NA	9, 2014		
		Sample Description Sample Matrix	LF-01 Soil			
Analyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
Hot Water Soluble						
Boron	Hot Water Soluble	e mg/kg	2.20	0.2		
Leachate Inorganic -	TCLP					
Antimony	TCLP Leachate	mg/L	<0.005	0.005	500	Below Limit
Arsenic	TCLP Leachate	mg/L	0.003	0.002	5	Below Limit
Barium	TCLP Leachate	mg/L	1.75	0.05	100	Below Limit
Beryllium	TCLP Leachate	mg/L	<0.001	0.001	5	Below Limit
Boron	TCLP Leachate	mg/L	<0.2	0.2	500	Below Limit
Cadmium	TCLP Leachate	mg/L	0.001	0.001	1	Below Limit
Chromium	TCLP Leachate	mg/L	<0.005	0.005	5	Below Limit
Cobalt	TCLP Leachate	mg/L	0.023	0.001	100	Below Limit
Copper	TCLP Leachate	mg/L	<0.1	0.1	100	Below Limit
Iron	TCLP Leachate	mg/L	<0.1	0.1	1000	Below Limit
Lead	TCLP Leachate	mg/L	<0.05	0.05	5	Below Limit
Mercury	TCLP Leachate	mg/L	<0.001	0.001	0.2	Below Limit
Nickel	TCLP Leachate	mg/L	<0.05	0.050	5	Below Limit
Selenium	TCLP Leachate	mg/L	<0.002	0.002	1	Below Limit
Silver	TCLP Leachate	mg/L	<0.005	0.005	5	Below Limit
Thallium	TCLP Leachate	mg/L	<0.0005	0.0005	5	Below Limit
Uranium	TCLP Leachate	mg/L	<0.005	0.005	2.0	Below Limit
Vanadium	TCLP Leachate	mg/L	<0.01	0.01	100	Below Limit
Zinc	TCLP Leachate	mg/L	<0.1	0.1	500	Below Limit
Zirconium	TCLP Leachate	mg/L	<0.01	0.01	500	Below Limit
pН	Initial	-	9.5			
pH	Final		6.1			
/letals Strong Acid D	Digestion					
Mercury	Strong Acid Extractable	mg/kg	0.04	0.01		
Antimony	Strong Acid Extractable	mg/kg	<0.2	0.2		
Arsenic	Strong Acid Extractable	mg/kg	6.2	0.2		
Barium	Strong Acid Extractable	mg/kg	232	1		
Beryllium	Strong Acid Extractable	mg/kg	0.7	0.1		
Cadmium	Strong Acid Extractable	mg/kg	0.26	0.01		
Chromium	Strong Acid	mg/kg	13.6	0.5		

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Analytical Report

Bill To:	City of Edmonton	Project:		Lot ID:	1040609
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 20, 2014
	Edmonton, AB, Canada	Location:	Rossdale: Area 1	Date Reported:	Nov 26, 2014
	T5S 1E5	LSD:		Report Number:	1970621
Attn:	Tawnya Anderson	P.O.:	D913127A, C#14-214-CRD	•	
Sampled By:	HB	Acct code:			
Company:	NECL				

	5	ference Number Sample Date Sample Time Sample Location nple Description Sample Matrix	1040609-8 November 19 NA LF-01 Soil	, 2014		
Analyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
Metals Strong Acid Di	igestion - Continued	Onto	Nesun		2	
licitals of ong Acia Di	Extractable					
Cobalt	Strong Acid Extractable	mg/kg	9.9	0.1		
Copper	Strong Acid Extractable	mg/kg	19.4	1		
Lead	Strong Acid Extractable	mg/kg	12.8	5		
Molybdenum	Strong Acid Extractable	mg/kg	1.2	1		
Nickel	Strong Acid Extractable	mg/kg	24.4	0.5		
Selenium	Strong Acid Extractable	mg/kg	<0.3	0.3		
Silver	Strong Acid Extractable	mg/kg	0.2	0.1		
Thallium	Strong Acid Extractable	mg/kg	0.20	0.05		
Tin	Strong Acid Extractable	mg/kg	1.9	1		
Uranium	Strong Acid Extractable	mg/kg	1.3	0.5		
Vanadium	Strong Acid Extractable	mg/kg	25.2	0.1		
Zinc	Strong Acid Extractable	mg/kg	57	1		
Physical and Aggrega Moisture	Wet Weight @ 105°C	%	19.9	0.1		
Salinity	100 0					
% Saturation		%	49			
Chloride	Saturated Paste	meq/L	1.53	0.06		
Chloride	Saturated Paste	mg/kg	26			
Soil Acidity		55	-			
рН	1:2 Soil:Water	pН	8.7		2-12.5	Within Range
Vaste Characterizatio		h	5.7			
Flash Point		°C	>75		61	Within Limit
Flash		Ū	No		01	vvitinii Liiliit
Paint Filter	Interpretation		Solid Waste			
	Interpretation		Soliu Waste			
	n Hydrocarbons - Soil					
Extraction Date	Total Extractables		21-Nov-14			

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To:	City of Edmonton	Project:		Lot ID:	1040609
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 20, 2014
	Edmonton, AB, Canada	Location:	Rossdale: Area 1	Date Reported:	Nov 26, 2014
	T5S 1E5	LSD:		Report Number:	1970621
Attn:	Tawnya Anderson	P.O.:	D913127A, C#14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

		Reference Number	1040609-8	0044		
		Sample Date	November 19	9, 2014		
		Sample Time	NA			
		Sample Location				
		Sample Description	LF-01			
		Sample Matrix	Soil			
Analyte		Units	Result	Nominal Detection Limit	Guideline Limit	Guideline Comments
Extractable Petroleum F	lydrocarbons - So	il - Continued				
Silica Gel Cleanup			Done			
F2c C10-C16	Dry Weight	mg/kg	<50	50		
F3c C16-C34	Dry Weight	mg/kg	<50	50		
F4c C34-C50	Dry Weight	mg/kg	<100	100		
F4HTGCc C34-C50+	Dry Weight	mg/kg	<100	100		
% C50+		%	<5			
Mono-Aromatic Hydroca	arbons - Soil					
Extraction Date	Volatiles		21-Nov-14			
Benzene	Dry Weight	mg/kg	<0.005	0.005		
Toluene	Dry Weight	mg/kg	<0.04	0.02		
Ethylbenzene	Dry Weight	mg/kg	<0.01	0.01		
Total Xylenes (m,p,o)	Dry Weight	mg/kg	<0.03	0.03		
Volatile Petroleum Hydr	ocarbons - Soil					
F1 C6-C10	Dry Weight	mg/kg	<10	10		
F1 -BTEX	Dry Weight	mg/kg	<10	10		
Mono-Aromatic Hydroca	arbons - Leachate					
Benzene	TCLP Leachate	mg/L	<0.01	0.01	0.5	Below Limit
Toluene	TCLP Leachate	mg/L	<0.01	0.01	0.5	Below Limi
Ethylbenzene	TCLP Leachate	mg/L	<0.01	0.01	0.5	Below Limit
Total Xylenes (m,p,o)	TCLP Leachate	mg/L	<0.02	0.02	0.5	Below Limit

RhSeunem

Randy Neumann, BSc

Vice President

Data have been validated by Analytical Quality Control and Exova's Integrated Data Validation System (IDVS). Generation and distribution of the report, and approval by the digitized signature above, are performed through a secure and controlled automatic process.

Approved by:

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1040609
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 20, 2014
	Edmonton, AB, Canada	Location:	Rossdale: Area 1	Date Reported:	Nov 26, 2014
	T5S 1E5	LSD:		Report Number:	1970621
Attn:	Tawnya Anderson	P.O.:	D913127A, C#14-214-CRD	-1	
Sampled By:	НВ	Acct code:			
Company:	NECL				

Hot Water Soluble

Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Boron	mg/L	0.00133749	-0.01	0.02		yes
Date Acquired:	November 21, 2014					
Client Sample Repl	licates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Boron	mg/kg	0.84	0.89	10	0.10	yes
Date Acquired:	November 21, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Boron	mg/kg	1.37	1.07	2.05		yes
Date Acquired:	November 21, 2014					
Boron	mg/kg	0.09	0.09	0.11		yes
Date Acquired:	November 21, 2014					

Leachate Inorganic - TCLP

Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Antimony	ug/L	-0.0287059	-0.501	0.501		yes
Arsenic	ug/L	0.0216208	-0.201	0.201		yes
Barium	ug/L	0.115281	-5.01	5.01		yes
Beryllium	ug/L	0.018415	-0.099	0.099		yes
Boron	ug/L	0.777936	-20.0	20.0		yes
Cadmium	ug/L	0.00257825	-0.0990	0.0990		yes
Chromium	ug/L	-0.208078	-0.501	0.501		yes
Cobalt	ug/L	0.00629528	-0.099	0.099		yes
Copper	ug/L	0.382848	-9.99	9.99		yes
Iron	ug/L	1.74559	-10.0	10.0		yes
Lead	ug/L	0.00716345	-5.010	5.010		yes
Mercury	ug/L	0.00377837	-0.0990	0.0990		yes
Nickel	ug/L	0.00224401	-0.501	0.501		yes
Selenium	ug/L	-0.0133197	-0.201	0.201		yes
Silver	ug/L	0.00933065	-0.501	0.501		yes
Thallium	ug/L	0.00569227	-0.0501	0.0501		yes
Uranium	ug/L	0.0121293	-0.501	0.501		yes
Vanadium	ug/L	-0.168038	-1.00	1.00		yes
Zinc	ug/L	1.38262	-9.99	9.99		yes
Zirconium	ug/L	0.0120947	-0.99	0.99		yes
Date Acquired:	November 22, 2014					
Client Sample Repl	icates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Antimony	mg/L	0.01	0.01	20	0.008	yes
Arsenic	mg/L	0.024	0.024	20	0.008	yes
Barium	mg/L	4.01	4.09	20	0.04	yes
Beryllium	mg/L	<0.001	<0.001	20	0.004	yes
Boron	mg/L	0.4	0.4	20	0.1	yes
Cadmium	mg/L	0.005	0.005	20	0.0004	yes

Exova Edmonton, Alberta T6B 3J4, Canada

T: +1 (780) 438-5522 7217 Roper Road NWF: +1 (780) 434-8586Edmonton, AlbertaE: Edmonton@exova.com W: www.exova com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1040609
Report To:	Nichols Environmental (Canada)		14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 20, 2014
	Edmonton, AB, Canada	Location:	Rossdale: Area 1	Date Reported:	Nov 26, 2014
	T5S 1E5	LSD:		Report Number:	1970621
Attn:	Tawnya Anderson	P.O.:	D913127A, C#14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

Leachate Inorganic - TCLP - Continued Client Sample Replicates Units

Client Sample Replicate	es Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed Q
Chromium	mg/L	<0.005	<0.005	20	0.020	ye
Cobalt	mg/L	0.020	0.020	20	0.004	y
Copper	mg/L	<0.1	<0.1	20	0.04	у
Iron	mg/L	8.5	8.5	20	0.4	у
Lead	mg/L	0.60	0.58	20	0.004	у
Nickel	mg/L	<0.05	<0.05	20	0.020	у
Selenium	mg/L	<0.002	<0.002	20	0.008	у
Silver	mg/L	<0.005	<0.005	20	0.004	У
Thallium	mg/L	0.0025	0.0025	20	0.0020	У
Uranium	mg/L	<0.005	< 0.005	20	0.020	У
Vanadium	mg/L	<0.01	<0.01	20	0.00	У
Zinc	mg/L	4.0	4.0	20	0.04	У
Zirconium	mg/L	<0.01	<0.01	20	0.04	}
pН		5.4	5.4	0	0.3	3
Date Acquired: Nov	ember 22, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed (
Antimony	mg/L	0.041	0.036	0.044		Y
Arsenic	mg/L	0.041	0.037	0.043		y
Barium	mg/L	0.21	0.18	0.22		2
Beryllium	mg/L	0.021	0.018	0.021		Y
Boron	mg/L	0.4	0.3	0.4		}
Cadmium	mg/L	0.0021	0.0019	0.0022		}
Chromium	mg/L	0.104	0.094	0.106		Y
Cobalt	mg/L	0.020	0.018	0.021		Y
Copper	mg/L	0.21	0.19	0.21		Y
Iron	mg/L	4.2	3.6	4.4		2
Lead	mg/L	0.020	0.019	0.021)
Mercury	mg/L	0.0030	0.0026	0.0032		Y
Nickel	mg/L	0.103	0.092	0.106		2
Selenium	mg/L	0.042	0.036	0.042		}
Silver	mg/L	0.020	0.018	0.022		Y
Thallium	mg/L	0.0102	0.0092	0.0108		}
Uranium	mg/L	0.104	0.089	0.109		}
Vanadium	mg/L	0.02	0.02	0.02		Y
Zinc	mg/L	0.20	0.18	0.22		2
Zirconium	mg/L	0.20	0.19	0.21		Y
Date Acquired: Nov	ember 22, 2014					
etals Strong Acid I	Digestion					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed
Mercury	ug/L	-0.01	-0.07	0.13)
,	ug/L	0.01785	-0.1	0.2		y

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Quality Control

Bill To: City of Edmonton Project:	Lot ID:	1040609
Report To: Nichols Environmental (Canada) ID: 14-214-CRD	Control Number:	
17331-107 Ave NE Name: Phase II ESA	Date Received:	Nov 20, 2014
Edmonton, AB, Canada Location: Rossdale: Area 1	Date Reported:	Nov 26, 2014
T5S 1E5 LSD:	Report Number:	1970621
Attn: Tawnya Anderson P.O.: D913127A, C#14-214-CRD		
Sampled By: HB Acct code:		
Company: NECL		

Metals Strong Acid Digestion - Continued

Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Arsenic	ug/L	0.04	-0.2	0.2		yes
Barium	ug/L	0.009	-1	1		yes
Beryllium	ug/L	-0.007	-0.1	0.1		yes
Cadmium	ug/L	-0.002	-0.01	0.01		yes
Chromium	ug/L	0.004	-0.5	0.5		yes
Cobalt	ug/L	0.0019	-0.1	0.1		yes
Copper	ug/L	0.021	-0.6	1.2		yes
Lead	ug/L	0.005	-5.0	5.0		yes
Molybdenum	ug/L	0.024	-1.0	1.0		yes
Nickel	ug/L	0.048	-0.4	0.7		yes
Selenium	ug/L	-0.064	-0.3	0.3		yes
Silver	ug/L	0.082	-0.09	0.14		yes
Thallium	ug/L	-0.01	-0.04	0.04		yes
Tin	ug/L	3.72	0.0	7.2		yes
Uranium	ug/L	0.002	-0.5	0.5		yes
Vanadium	ug/L	0.02625	-0.1	0.1		yes
Zinc	ug/L	0.686	-1	1		yes
Date Acquired: Novem	ber 21, 2014					
Client Sample Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Mercury	mg/kg	0.02	0.01	10	0.03	yes
Antimony	mg/kg	<0.2	<0.2	20	0.4	yes
Arsenic	mg/kg	3.9	4.0	20	0.4	yes
Barium	mg/kg	120	133	20	2	yes
Beryllium	mg/kg	0.5	0.5	20	0.2	yes
Cadmium	mg/kg	0.21	0.21	20	0.02	yes
Chromium	mg/kg	19.4	19.9	20	1.1	yes
Cobalt	mg/kg	7.3	7.4	20	0.2	yes
Copper	mg/kg	14.1	14.2	20	2.2	yes
Lead	mg/kg	6.5	6.7	20	0.2	yes
Molybdenum	mg/kg	<1.0	<1.0	20	2.2	yes
Nickel	mg/kg	19.1	18.7	20	1.1	yes
Selenium	mg/kg	0.3	0.3	20	0.7	yes
Silver	mg/kg	0.1	0.1	20	0.22	yes
Thallium	mg/kg	0.20	0.19	20	0.11	yes
Tin	mg/kg	1.7	1.6	20	2.2	yes
Uranium		1.1	1.1	20	1.1	yes
	mg/kg	1.1				
Vanadium	mg/kg mg/kg	32.1	32.4	20	0.2	yes
Vanadium Zinc					0.2 2	-
Zinc	mg/kg	32.1	32.4	20		-
Zinc Date Acquired: Novem	mg/kg mg/kg	32.1	32.4	20		yes yes Passed QC
Zinc	mg/kg mg/kg ber 21, 2014	32.1 39	32.4 38	20 20		yes

Exova Edmonton, Alberta T6B 3J4, Canada

T: +1 (780) 438-5522
 LAUVA
 T: +1 (780) 438-5522

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E: Edmonton@exova.com

 T6B 314 Canada
 W www.com
 W: www.exova com

Quality Control

	City of Edmonton Nichols Environmental (Canada) 17331-107 Ave NE Edmonton, AB, Canada T5S 1E5	Project: ID: Name: Location: LSD:	14-214-CRD Phase II ESA Rossdale: Area 1	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Nov 20, 2014 Nov 26, 2014
Attn: Sampled By: Company:		P.O.: Acct code:	D913127A, C#14-214-CRD	Report Number.	1370021

Metals Strong Acid Digestion - Continued

Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC
Arsenic	mg/kg	39.1	36.7	44.3	yes
Barium	mg/kg	191	185	215	yes
Beryllium	mg/kg	20.1	17.4	22.2	yes
Cadmium	mg/kg	2.03	1.80	2.20	yes
Chromium	mg/kg	102	92.2	105.8	yes
Cobalt	mg/kg	21.5	18.5	22.5	yes
Copper	mg/kg	192	176.3	207.3	yes
Lead	mg/kg	21.1	18.6	21.8	yes
Molybdenum	mg/kg	184	172.6	215.4	yes
Nickel	mg/kg	95.5	90.6	107.4	yes
Selenium	mg/kg	38.8	36.1	42.9	yes
Silver	mg/kg	18.8	16.69	21.97	yes
Thallium	mg/kg	10.1	9.57	11.23	yes
Tin	mg/kg	179	171.9	201.9	yes
Uranium	mg/kg	96.5	90.3	108.0	yes
Vanadium	mg/kg	18.2	16.3	20.3	ye
Zinc	mg/kg	193	180	220	ye
Date Acquired:	November 21, 2014				
Mercury	mg/kg	0.07	0.05	0.11	уе
Date Acquired:	November 21, 2014				
Mercury	mg/kg	0.27	0.15	0.42	yes
Antimony	mg/kg	0.7	0.3	1.1	ye
Arsenic	mg/kg	85.6	65.9	97.9	yes
Barium	mg/kg	228	213	270	yes
Beryllium	mg/kg	0.7	0.5	0.9	yes
Cadmium	mg/kg	1.92	1.50	2.64	yes
Chromium	mg/kg	35.6	27.4	39.2	yes
Cobalt	mg/kg	13.5	11.3	16.0	yes
Copper	mg/kg	193	162.7	222.9	ye
Lead	mg/kg	112	99.6	135.6	yes
Molybdenum	mg/kg	2.8	2.0	3.8	ye
Nickel	mg/kg	61.4	47.1	73.5	ye
Selenium	mg/kg	0.7	0.3	1.3	ye
Silver	mg/kg	0.8	0.25	1.15	ye
Thallium	mg/kg	0.32	0.26	0.40	yes
Tin	mg/kg	3.3	1.0	5.4	yes
Uranium	mg/kg	1.2	0.9	1.5	ye
Vanadium	mg/kg	44.1	31.5	56.1	yes
Zinc	mg/kg	462	355	550	yes

Physical and Aggregate Properties

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1040609
Report To:	Nichols Environmental (Canada)		14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 20, 2014
	Edmonton, AB, Canada	Location:	Rossdale: Area 1	Date Reported:	Nov 26, 2014
	T5S 1E5	LSD:		Report Number:	1970621
Attn:	Tawnya Anderson	P.O.:	D913127A, C#14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

Physical and Aggregate	e Properties					
Client Sample Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Moisture	%	14.7	14.9	10	0.3	yes
Date Acquired: Novem	ber 21, 2014					
Particle Size Analysis -	Wet Sieve					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
75 micron sieve	% by weight	27.0	25.4	34.5		yes
	ber 21, 2014	-	-			,
Polycyclic Aromatic Hy	drocarbons - Soil					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Naphthalene	ng/mL	0	-0.010	0.010		yes
Acenaphthylene	ng/mL	0	-0.05	0.05		yes
Acenaphthene	ng/mL	0	-0.05	0.05		yes
Fluorene	ng/mL	0	-0.05	0.05		yes
Phenanthrene	ng/mL	0	-0.01	0.01		yes
Anthracene	ng/mL	0	-0.003	0.003		yes
Fluoranthene	ng/mL	0	-0.01	0.01		yes
Pyrene	ng/mL	0	-0.01	0.01		yes
Benzo(a)anthracene	ng/mL	0	-0.01	0.01		yes
Chrysene	ng/mL	0	-0.05	0.05		yes
Benzo(b)fluoranthene	ng/mL	0	-0.05	0.05		yes
Benzo(b+j)fluoranthene	ng/mL	0	-0.05	0.05		yes
Benzo(k)fluoranthene	ng/mL	0	-0.05	0.05		yes
Benzo(a)pyrene	ng/mL	0	-0.05	0.05		yes
Indeno(1,2,3-c,d)pyrene	ng/mL	0	-0.05	0.05		yes
Dibenzo(a,h)anthracene	ng/mL	0	-0.05	0.05		yes
Benzo(g,h,i)perylene	ng/mL	0	-0.05	0.05		yes
Date Acquired: Novem	ber 21, 2014					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Naphthalene	ng/mL	90.40	80	120		yes
Acenaphthylene	ng/mL	89.20	80	120		yes
Acenaphthene	ng/mL	86.00	80	120		yes
Fluorene	ng/mL	95.20	80	120		yes
Phenanthrene	ng/mL	98.60	80	120		yes
Anthracene	ng/mL	93.00	80	120		yes
Fluoranthene	ng/mL	97.60	80	120		yes
Pyrene	ng/mL	100.60	80	120		yes
Benzo(a)anthracene	ng/mL	112.40	80	120		yes
Chrysene	ng/mL	80.60	80	120		yes
Benzo(b)fluoranthene	ng/mL	118.80	80	120		yes
Benzo(k)fluoranthene	ng/mL	84.00	80	120		yes
Benzo(a)pyrene	ng/mL	97.20	80	120		yes

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Quality Control

	City of Edmonton Nichols Environmental (Canada) 17331-107 Ave NE Edmonton, AB, Canada T5S 1E5	Project: ID: Name: Location: LSD:	14-214-CRD Phase II ESA Rossdale: Area 1	Control Number: Date Received: Date Reported:	Nov 20, 2014 Nov 26, 2014
Attn: Sampled By: Company:		P.O.: Acct code:	D913127A, C#14-214-CRD	Report Number:	1970621

Polycyclic Aromatic Hydrocarbons - Soil -Continued

Continued						
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Indeno(1,2,3-c,d)pyrer	-	93.80	80	120		yes
Dibenzo(a,h)anthrace	-	83.60	80	120		yes
Benzo(g,h,i)perylene	ng/mL	81.20	80	120		yes
Date Acquired: No	vember 21, 2014					
Salinity						
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Chloride	mg/L	1.5189	0	5		yes
Date Acquired: No	vember 21, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Electrical Conductivity	dS/m at 25 C	3.17	2.20	4.00		yes
% Saturation	%	62	56	68		yes
Chloride	mg/L	91	56	119		yes
Date Acquired: No	vember 21, 2014					
Electrical Conductivity	dS/m at 25 C	32.0	26.80	35.20		yes
Chloride	mg/L	1940	1871	2231		yes
Date Acquired: No	vember 21, 2014					
Soil Acidity						
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
pН	рН	6.7	5.3	7.2		yes
Date Acquired: No	vember 24, 2014					
Client Sample Replicat	es Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
pН	рН	8.1	8.1	0	0.3	yes
Date Acquired: No	vember 24, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
рН	рН	7.2	7.0	7.4		yes
Date Acquired: No	vember 24, 2014					
Waste Characterizat	ion					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Flash Point	°C	51	50	55		yes
Date Acquired: No	vember 21, 2014					·
Water Soluble Parar	neters					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Chromium (VI)	mg/L	0	-0.10	0.10		yes
	vember 21, 2014		00	0.10		,
Client Sample Replicat		Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Chromium (VI)	mg/kg	<0.10	<0.10	10	0.01	yes
× ,						
T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

	City of Edmonton Nichols Environmental (Canada 17331-107 Ave NE Edmonton, AB, Canada T5S 1E5 Tawnya Anderson	Name: Phase Location: Rosse LSD:	4-CRD e II ESA dale: Area 1 127A, C#14-214-CRD	Lot Control Numb Date Receive Date Report Report Numb	er: B10684 ed: Nov 20, 2014 ed: Nov 26, 2014	
Sampled By:		Acct code:				
Company:						
Water Solub	le Parameters - Continue	d				
Client Sample	-	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Date Acqui	red: November 21, 2014					
Extractable I	Petroleum Hydrocarbons	-				
Soil	-					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
F2c C10-C1	6 mg/kg	262	253	30	20	yes
F3c C16-C3	4 mg/kg	1040	988	30	20	yes
F4c C34-C5	i0 mg/kg	326	310	30	30	yes
F4c+ C50+	mg/kg	<100	<100	30	20	yes
Date Acqui	red: November 21, 2014					
Control Samp	ole Units	Measured	Lower Limit	Upper Limit		Passed QC
F2c C10-C1	6 mg/kg	96	79	121		yes
F3c C16-C3	4 mg/kg	142	122	158		yes
F4c C34-C5	i0 mg/kg	199	170	230		yes
Date Acqui	red: November 21, 2014					
Matrix Spike	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
F2c C10-C1	6 mg/kg	89	65	135		yes
F3c C16-C3	4 mg/kg	105	65	135		yes
F4c C34-C5	i0 mg/kg	104	65	135		yes
Date Acqui	red: November 21, 2014					
Mono-Aroma	atic Hydrocarbons - Soil					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Benzene	ng	0	-1.650	1.650		yes
Toluene	ng	1.9	-8.01	8.01		yes
Ethylbenzen	ne ng	0	-3.99	3.99		yes
m,p-Xylene	ng	0	-3.99	3.99		yes
o-Xylene	ng	0	-3.99	3.99		yes
Date Acqui	red: November 21, 2014					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Benzene	mg/kg	0.910	0.899	20	0.004	yes
Toluene	mg/kg	0.93	0.92	20	0.01	yes
Ethylbenzen		0.94	0.93	20	0.01	yes
m,p-Xylene	mg/kg	1.89	1.86	20	0.01	yes
o-Xylene	mg/kg	0.95	0.93	20	0.01	yes
Date Acqui	•					_
Control Samp		Measured	Lower Limit	Upper Limit		Passed QC
Benzene	mg/kg	1.29	1.063	1.438		yes
Toluene	mg/kg	1.42	1.06	1.44		yes
Ethylbenzen		1.40	1.06	1.44		yes
m,p-Xylene	mg/kg	2.85	2.12	2.88		yes

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1040609
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	
	Edmonton, AB, Canada	Location:	Rossdale: Area 1	Date Reported:	·
	T5S 1E5	LSD:		Report Number:	·
Attn:	Tawnya Anderson	P.O.:	D913127A, C#14-214-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

Mono-Aromatic Hydrocarbons - Soil -

Continued	-					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
o-Xylene	mg/kg	1.39	1.06	1.44		yes
Date Acquired:	November 21, 2014					
Volatile Petroleu	m Hydrocarbons - So	il				
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
F1 C6-C10	ng	675.02	-1599	1599		yes
Date Acquired:	November 21, 2014					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
F1 C6-C10	mg/kg	19	20	20	4	yes
Date Acquired:	November 21, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
F1 C6-C10	mg/kg	18	14	21		yes
Date Acquired:	November 21, 2014					
PAH - Soil - Surr	ogate Recoverv					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Nitrobenzene-d5	%	110.3	23	130		yes
2-Fluorobiphenyl	%	109.87	30	130		yes
p-Terphenyl-d14	%	92.46	18	137		yes
Date Acquired:	November 21, 2014					
Mono-Aromatic H	lydrocarbons - Leacl	nate				
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Benzene	ng	0	-9.99	9.99		yes
Toluene	ng	0	-9.99	9.99		yes
Ethylbenzene	ng	0	-9.99	9.99		yes
m,p-Xylene	ng	0	-9.99	9.99		yes
o-Xylene	ng	0	-9.99	9.99		yes
Date Acquired:	November 22, 2014					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Benzene	ng	94.63	85	115		yes
Toluene	ng	106.03	85	115		yes
Ethylbenzene	ng	100.97	85	115		yes
m,p-Xylene	ng	100.60	85	115		yes
o-Xylene	ng	103.16	85	115		yes
Date Acquired:	November 22, 2014					
Client Sample Rep	icates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Benzene	mg/L	<0.01	<0.01	20	10.00	yes
Toluene	mg/L	<0.01	<0.01	20	10.00	yes
Ethylbenzene	mg/L	<0.01	<0.01	20	10.00	yes

Edmonton, Alberta T6B 3J4, Canada

 Exova
 T: +1 (780) 438-5522

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E: Edmonton@exova.com
 W: www.exova.com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1040609
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	
	Edmonton, AB, Canada	Location:	Rossdale: Area 1	Date Reported:	·
	T5S 1E5	LSD:		Report Number:	,
Attn:	Tawnya Anderson	P.O.:	D913127A, C#14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

Mono-Aromatic Hydrocarbons - Leachate

- Continued	,					
Client Sample Repl	icates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
m,p-Xylene	mg/L	<0.01	0.01	20	10.00	yes
o-Xylene	mg/L	<0.01	<0.01	20	10.00	yes
Date Acquired:	November 22, 2014					
Barite Soil Analy	sis					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Barium	mg/L	0.00310695	-0.00	0.01		yes
Date Acquired:	November 21, 2014					
Client Sample Repl	icates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Barium	mg/kg	12.1	12.0	10	5.00	yes
Date Acquired:	November 21, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Barium	mg/kg	11.0	8.87	12.71		yes
Date Acquired:	November 21, 2014					
Barium	mg/kg	0.10	0.09	0.11		yes
Date Acquired:	November 21, 2014					

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Methodology and Notes

Bill To:	City of Edmonton	Project:		Lot ID:	1040609
Report To:	Nichols Environmental (Canada)		14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Nov 20, 2014
	Edmonton, AB, Canada	Location:	Rossdale: Area 1	Date Reported:	Nov 26, 2014
	T5S 1E5	LSD:		Report Number:	1970621
Attn:	Tawnya Anderson	P.O.:	D913127A, C#14-214-CRD	·	
Sampled By:	HB	Acct code:			
Company:	NECL				

Method of Analysis

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Method Name	Reference	Method	Date Analysis Started	Location		
1:5 Water Soluble Extraction	McKeague	* Soluble Salts in Extracts of 1:5 Soil:Water Mixtures, 3.23	21-Nov-14	Exova Edmonton		
Barium (Extractable) in soil (0.1 M CaCl2)	Ab Env	Analytical Method for Extractable Barium, 6.6.2	21-Nov-14	Exova Edmonton		
Boron in general soil	McKeague	* Hot Water Soluble Boron - Azomethine-H Method, 4.61	21-Nov-14	Exova Edmonton		
Boron in general soil	McKeague	* Hot Water Soluble Boron - Azomethine-H Method, 4.61	24-Nov-14	Exova Edmonton		
BTEX-CCME in Soil EDM	CCME	 Reference Method for Canada-Wide Standard for PHC in Soil, CWS PHCS TIER 1 	21-Nov-14	Exova Edmonton		
BTEX-CCME in Soil EDM	US EPA	* US EPA method, 8260B/5035	21-Nov-14	Exova Edmonton		
Flash Point (Closed cup)	ASTM	* Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester, D 93	21-Nov-14	Exova Edmonton		
Leachate Inorganic (TCLP) ICP-MS	US EPA	 Toxicity Characteristic Leaching Procedure, SW-846, EPA 1311 	22-Nov-14	Exova Edmonton		
Leachate Organic (TCLP-BTEX)	US EPA	 Toxicity Characteristic Leaching Procedure, SW-846, EPA 1311 	22-Nov-14	Exova Edmonton		
Mercury (Hot Block) in Soil	US EPA	* Determination of Hg in Sediment by Cold Vapor Atomic Absorption Spec, 245.5	21-Nov-14	Exova Edmonton		
Mercury (Hot Block) in Soil	US EPA	* Determination of Hg in Sediment by Cold Vapor Atomic Absorption Spec, 245.5	24-Nov-14	Exova Edmonton		
Metals ICP-MS (Hot Block) in soil	SW-846	 Acid Digestion of Sediments, Sludges, and Soils, EPA 3050B 	21-Nov-14	Exova Edmonton		
Metals ICP-MS (Hot Block) in soil	SW-846	 Acid Digestion of Sediments, Sludges, and Soils, EPA 3050B 	24-Nov-14	Exova Edmonton		
Moisture	Carter	* Gravimetric Method with Oven Drying, 51.2	21-Nov-14	Exova Edmonton		
PAH - Soil	AESRD	Index of Additive Cancer Risk (IACR), PAHs	21-Nov-14	Exova Calgary		
PAH - Soil	US EPA	 * Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry, 8270 	21-Nov-14	Exova Calgary		
Paint Filter Liquids Test	US EPA	* Paint Filter Liquids Test, 9095B	21-Nov-14	Exova Edmonton		
Particle Size by Wet Sieve	ASTM	* Standard Test Method for Materials Finer than 75-um (No. 200) Sieve in Mineral Aggregates by Washing, C 117-04	21-Nov-14	Exova Edmonton		
pH and Conductivity in general soil 1:2	McKeague	* 1:2 Soil:Water Ratio, 4.12	21-Nov-14	Exova Edmonton		
Saturated Paste in General Soil	Carter	 * Electrical Conductivity and Soluble lons, Chapter 15 	21-Nov-14	Exova Edmonton		
TEH-CCME in Soil (Shake) EDM	CCME	* Reference Method for Canada-Wide Standard for PHC in Soil, CWS PHCS TIER 1	21-Nov-14	Exova Edmonton		

Exova Edmonton, Alberta T6B 3J4, Canada

T: +1 (780) 438-5522 7217 Roper Road NW F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Methodology and Notes

Bill To:	City of Edmonton	Project:		Lot ID:	1040609
Report To:	Nichols Environmental (Canada) 17331-107 Ave NE	ID: Name:	14-214-CRD Phase II ESA	Control Number: Date Received:	B10684
	Edmonton, AB, Canada T5S 1E5	Location: LSD:	Rossdale: Area 1	Date Reported:	Nov 26, 2014
Attn: Sampled By: Company:	Tawnya Anderson HB	P.O.: Acct code:	D913127A, C#14-214-CRD	Report Number:	1970621

* Reference Method Modified

References

AESRD	Alberta Tier 1 Soil and Groundwater Remediation Guidelines
McKeague	Manual on Soil Sampling and Methods of Analysis
ASTM	Annual Book of ASTM Standards
Carter	Soil Sampling and Methods of Analysis.
SW-846	Test Methods for Evaluating Solid Waste
US EPA	US Environmental Protection Agency Test Methods
APHA	Standard Methods for the Examination of Water and Wastewater
Ab Env	Alberta Environment, Soil Quality Guidelines for Barite

Guidelines

Guideline Description	Class 2 Landfill (AB)
Guideline Source	AENV Waste Control Regulation, Alberta Regulation 192/96
Guideline Comments	Limits for analytes that may be required for Class 2 Landfill Acceptance may not be presented in this report. Consult the AENV Waste Control Regulation for hazardous waste limits, and ERCB D058 for dangerous oilfield waste properties.

Comments:

The comparison of test results to guideline limits is provided for information purposes only. This is not to be taken as a statement of conformance / nonconformance to any guideline, regulation or limit. The data user is responsible for all conclusions drawn with respect to the data and is advised to consult official regulatory references when evaluating compliance.

Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

 Exova
 T: +1 (780) 438-5522

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E:Edmonton@exova.com

 T6B 3,J4, Canada
 W: www.exova.com

Hydrocarbon Chromatogram

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1040609
Report To:	Nichols Environmental (Canada)	Name:	Phase II ESA	Control Number:	B10684
		Location:	Rossdale: Area 1	Date Received:	Nov 20, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 21, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1970621
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:	HB				
Company:	NECL				

Exova Number: 1040609-8 Sample Date: Nov 19, 2014 Sample Description: LF-01

Terms and conditions: www.exova.ca/terms&conditions.html

		58			6000 C. M										
202/3	Exov	~ 100	Testing	Billing Infon	nation	era set	Сор	of Rep	De	То:		e e tout i		RUS	SH Priority
	www.exova.com		Advising Assuring	Company: Address:	Nichols Er 17381-197		Com	-						Upon filling out this surcharges will	s section, client accepts that be applied to the analysis
	Noteer Informat	011			Edmont		Carl Carl Andrews	,00,						Date Required	n na har na h I
200	Project ID:	14-214-	<u> </u>	Attention:	nobra T		Atter	tion:					- 	As Indicated	All Analysis
Profest profesta (Jacque	Project Name:	Pmar I	the second se	Phone:	199 - CST		Phon	00						···· {	······································
torior Jacios Januar	Project Location:	27k	16: Acent	Cell:	and a second s	an a	Cell:						44 A and an annual part of the course of the		rested, turn around will default riority, with pricing and turn
an si	Legal Location:			Fax:			Fax:							around time to mate	h. Please contact the lab prior
anuner	PO/AFE#:	-446-64	CRO	E-mail:			E-ma	:			~~~~	and a second		to submit	ing RUSH samples.
100	Proj. Acct. Code:	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	×	Agreement ID:	:									Signature	
a a constante		and the second		Copy of repor		รู้สารีพระระการรูลแรงการและ	changers output to gate constants	of invok	ce:		05071/110/192104043005	200000000000000000000000000000000000000		Sample Cus	stody (please print)
in'mandes	Report Results	}∕ [8- ma}l	Online	PDF			QC Report							Sampled by:	8
to godine e	to appendition of the second state of the seco	Mail Mail	E Fax			la l	Commission (Company)			A 22				Company: NE	
-a-skilden-	unerent from abo	sroonnienis (p /e).	lease include cont	tact mormation	inciuaing ph. # it		Regulatory	and the second se	NUMBER OF COMBINERS					I authoriza Exova to p on this form:	roceed with the work indicated
100000000	D.A.	. Will an	345 63	24 C 20		Require	ments Beio	V:	oma					Date: NOV. 2011	
ley- brancesco	s brever of the	CRAIL (AL)	with Gtzy	do can	NONTON			3.) - J		2 55	ス周			Contract of the second s	n for Lab use only
2015-11-2020		Rates								So and				Date/Time stamp:	
2000 Notice								the second s		T Å				NGU 20 #	- 498
ta Bana		ana mangana kana kana kana kana kana kana kan	Ren plan inication' composition war no survey including to		1977/2007/94/06/0024221/14/07/06/08/08/07/06/06/06/06/06/06/06/06/06/06/06/06/06/	; ;	-		Z Faniyan					1.8475.8.17785.1	
	Martan ayas menabatan nanan menangenya pa	Identification	Location	IN CM(M)	Date/Time sample	ed Ma	trix Samp Met			(√ r¢	Enter tes Hevant sa			Indicate below any condition of sample	deficiencies in the es:
ž	1 31214			1.0	<u> 26 PL Juch</u>	14 55	d dr	16 3						**************************************	Were Exova supplies
5. 5.	and the fight work from the first second	-12		<u> 105</u>	ļ				$ \rangle$	KX.				6	used?
	3 91:14			<u> </u>					21	XX		2.2			Was there any damage to
- (Īm-	4 <u>AU14</u> 5 AU14			445					4	X 🔄					the shipping container?
·		an a particular de la casa de la c		$\left \underline{a} \cdot \underline{o} \right $	<u></u>						<u>XIII</u>	<u>[332]</u>			
outine.		the second s			······					<u> - 189</u>					Were the containers packaged well?
,	ALLA	ormetode de bland and de la competence de		<u> 125</u>	¥	<u> </u>	<u> </u>			<u> (186</u>					
-	<u>- 4F-0</u>				<u>06, PL VIII</u>	4 50	ii qr	ah 🖗	4						
Shindelen	10											222			Were any extra samples - received (document
	11										CERT Record				below)?
	12]							-455 	14) 27	80	<u>- 6.01</u> 6229		i de la composición d Notación de la composición de la		
dClasses.et	13	gana i yanay na kina ina faharan ya kuna na kana na ka							28) 23	- 1244 12674	- 1948) 1940)	1949 1943			Are samples within
00	14							1364 					12.923 13.63		-recommended holding
5D 120-00	15										- <u>1877</u> 				limes/temp?
2 2			ital Sample Infor			Indicate lot r	rumber or a	fix lot la	bel	here:	mmhinideal an	Shipp	ing:	# and size of coolers	received:
1000			s form is required									COD	V/N	All and a second processing an	
	200 P	ease indicate :	any polentially h	lazardous sam	ples	and the second	m K	Cm	r	ę.		Coole	r temp:	Delivery Method:	
Ø.,			Contro	4 B10	684		040	-0 U	مىيەر مەرىمە م	į			4.6	Waybil:	HANIS
in S	0 90 <i>6</i>	, ,		qaaqaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa		****		776992425000000000			Mandorovan and a server		(.) (C)	Received by:	ζο γ
20 C	1. J.														

A CARACTER

 Exova
 T: +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F: +1 (403) 291-2021

 Calgary, Alberta
 F: calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Report Transmission Cover Page

Bill To:	City of Edmonton	Project:		Lot ID:	1042666
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	,
	T5S 1E5	LSD:		Report Number:	1973472
Attn:	Tawnya Anderson	P.O.:	C#14-214-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

Contact & Affiliation	Address	Delivery Commitments
Tawnya Anderson	17331-107 Ave NE	On [Lot Verification] send
Nichols Environmental (Ca	nada) Ltd Edmonton, Alberta T5S 1E5 Phone: (780) 484-3377 Fax: (780) 484-5093	(COA) by Email - Merge Reports On [Report Approval] send
	Email	(Test Report, COC) by Email - Merge Reports
		On [Lot Creation] send
		(COR) by Email - Single Report

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.
 Exova
 T: +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F: +1 (403) 291-2021

 Calgary, Alberta
 F: Calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1042666
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Dec 2, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Dec 5, 2014
	T5S 1E5	LSD:		Report Number:	1973472
Attn:	Tawnya Anderson	P.O.:	C#14-214-CRD	-1	
Sampled By:	НВ	Acct code:			
Company:	NECL				

	s	ference Number Sample Date Sample Time Sample Location nple Description Matrix	1042666-1 Nov 19, 2014 NA A1 / 14-20 / 1.5 / m Soil			
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Polycyclic Aromatic Hydr	ocarbons - Soil					
Naphthalene	Dry Weight	mg/kg	<0.010			0.01
Acenaphthylene	Dry Weight	mg/kg	<0.05			0.05
Acenaphthene	Dry Weight	mg/kg	<0.05			0.05
Fluorene	Dry Weight	mg/kg	<0.05			0.05
Phenanthrene	Dry Weight	mg/kg	0.01			0.01
Anthracene	Dry Weight	mg/kg	<0.003			0.003
Fluoranthene	Dry Weight	mg/kg	<0.01			0.01
Pyrene	Dry Weight	mg/kg	<0.01			0.01
Benzo(a)anthracene	Dry Weight	mg/kg	<0.01			0.01
Chrysene	Dry Weight	mg/kg	<0.05			0.05
Benzo(b+j)fluoranthene	Dry Weight	mg/kg	<0.05			0.05
Benzo(k)fluoranthene	Dry Weight	mg/kg	<0.05			0.05
Benzo(a)pyrene	Dry Weight	mg/kg	<0.05			0.05
Indeno(1,2,3-c,d)pyrene	Dry Weight	mg/kg	<0.05			0.05
Dibenzo(a,h)anthracene	Dry Weight	mg/kg	<0.05			0.05
Benzo(g,h,i)perylene	Dry Weight	mg/kg	<0.05			0.05
IACR_Coarse	Index of Additive Cancer Risk		<0.001			0.001
IACR_Fine	Index of Additive Cancer Risk		<0.001			0.001
PAH - Soil - Surrogate Re	covery					
Nitrobenzene-d5	PAH - Surrogate	%	83			23-130
2-Fluorobiphenyl	PAH - Surrogate	%	84			30-130
p-Terphenyl-d14	PAH - Surrogate	%	103			18-137

 Exova
 T: +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F: +1 (403) 291-2021

 Calgary, Alberta
 F: Calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1042666
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Dec 2, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Dec 5, 2014
	T5S 1E5	LSD:		Report Number:	1973472
Attn:	Tawnya Anderson	P.O.:	C#14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

		rence Number Sample Date Sample Time	1042666-2 Oct 30, 2014 NA	1042666-3 Oct 30, 2014 NA	1042666-4 Oct 30, 2014 NA	
		mple Location le Description Matrix	A3 / 14-09 / 1.0 / m Soil	A3 / 14-12 / 3.1 / m Soil	A3 / 14-13 / 1.5 / m Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Hot Water Soluble						Linit
Boron	Hot Water Soluble	mg/kg	1.31	1.34	1.51	0.2
Metals Strong Acid Di	gestion					
Mercury	Strong Acid Extractable	mg/kg	0.09	0.04	0.03	0.01
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2	<0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	4.1	5.7	5.0	0.2
Barium	Strong Acid Extractable	mg/kg	248	248	172	1
Beryllium	Strong Acid Extractable	mg/kg	0.5	0.5	0.5	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.39	0.27	0.15	0.01
Chromium	Strong Acid Extractable	mg/kg	11.1	16.4	13.9	0.5
Cobalt	Strong Acid Extractable	mg/kg	5.4	8.8	7.4	0.1
Copper	Strong Acid Extractable	mg/kg	19.7	17.2	11.3	1
Lead	Strong Acid Extractable	mg/kg	154	16.3	12.1	5
Molybdenum	Strong Acid Extractable	mg/kg	1.2	1.0	<1.0	1
Nickel	Strong Acid Extractable	mg/kg	21.4	23.5	20.1	0.5
Selenium	Strong Acid Extractable	mg/kg	<0.3	<0.3	0.3	0.3
Silver	Strong Acid Extractable	mg/kg	0.2	0.2	0.1	0.1
Thallium	Strong Acid Extractable	mg/kg	0.09	0.19	0.13	0.05
Tin	Strong Acid Extractable	mg/kg	2.7	1.8	1.7	1
Uranium	Strong Acid Extractable	mg/kg	0.7	0.8	0.5	0.5
Vanadium	Strong Acid Extractable	mg/kg	18.8	26.8	23.8	0.1
Zinc	Strong Acid Extractable	mg/kg	62	60	46	1
Barite Soil Analysis						
Barium	Extractable	mg/kg	37.7	75.8	20.1	0.05
Water Soluble Parame	eters					
Chromium (VI)	Water Soluble	mg/kg	<0.10	<0.10	<0.10	0.1

Exova T: +1 (403) 291-2022
 Extova
 F:
 +1 (403) 291-2021

 Bay #5, 2712-37 Avenue N.E.
 F:
 +1 (403) 291-2021

 Calgary, Alberta
 E:
 Calgary@exova com
 Calgary, Alberta T1Y-5L3, Canada W: www.exova com

Analytical Report

Bill To:	City of Edmonton	Project:		Lot ID:	1042666
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Dec 2, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Dec 5, 2014
	T5S 1E5	LSD:		Report Number:	,
Attn:	Tawnya Anderson	P.O.:	C#14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

		rence Number Sample Date Sample Time mple Location	1042666-5 Nov 03, 2014 NA	1042666-6 Nov 03, 2014 NA	1042666-7 Nov 03, 2014 NA	
		le Description	A6 / 14-15 / 6.5 / m	A6 / 14-16 / 2.0 / m	A6 / 14-17 / 8.0 / m	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detectior Limit
Hot Water Soluble						
Boron	Hot Water Soluble	mg/kg	11.6	15.4	3.42	0.2
Metals Strong Acid Dig	gestion					
Mercury	Strong Acid Extractable	mg/kg	0.06	1.07	0.02	0.01
Antimony	Strong Acid Extractable	mg/kg	<0.2	<0.2	<0.2	0.2
Arsenic	Strong Acid Extractable	mg/kg	5.3	9.8	5.5	0.2
Barium	Strong Acid Extractable	mg/kg	284	654	387	1
Beryllium	Strong Acid Extractable	mg/kg	0.7	1.2	0.7	0.1
Cadmium	Strong Acid Extractable	mg/kg	0.16	0.60	0.16	0.01
Chromium	Strong Acid Extractable	mg/kg	13.8	17.2	11.1	0.5
Cobalt	Strong Acid Extractable	mg/kg	7.5	8.9	6.6	0.1
Copper	Strong Acid Extractable	mg/kg	12.8	31.5	11.9	1
Lead	Strong Acid Extractable	mg/kg	7.1	43.4	<4.9	5
Molybdenum	Strong Acid Extractable	mg/kg	1.1	1.4	1.4	1
Nickel	Strong Acid Extractable	mg/kg	28.1	40.0	27.9	0.5
Selenium	Strong Acid Extractable	mg/kg	<0.3	0.5	<0.3	0.3
Silver	Strong Acid Extractable	mg/kg	0.1	0.2	<0.1	0.1
Thallium	Strong Acid Extractable	mg/kg	0.15	0.26	0.11	0.05
Tin	Strong Acid Extractable	mg/kg	2.2	2.0	3.1	1
Uranium	Strong Acid Extractable	mg/kg	1.0	1.4	1.0	0.5
Vanadium	Strong Acid Extractable	mg/kg	23.1	26.7	26.4	0.1
Zinc	Strong Acid Extractable	mg/kg	41	73	27	1
Barite Soil Analysis						
Barium	Extractable	mg/kg	18.8	24.5	33.9	0.05
Water Soluble Paramet	ters					
Chromium (VI)	Water Soluble	mg/kg	<0.10	<0.10	<0.10	0.1

RhSeunem

Approved by: Randy Neumann, BSc

Vice President

Data have been validated by Analytical Quality Control and Exova's Integrated Data Validation System (IDVS). Generation and distribution of the report, and approval by the digitized signature above, are performed through a secure and controlled automatic process.

 Exova
 T: +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F: +1 (403) 291-2021

 Calgary, Alberta
 F: calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1042666
Report To:	Nichols Environmental (Canada)		14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Dec 2, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Dec 5, 2014
A	T5S 1E5	LSD:	0.111.011.055	Report Number:	1973472
	Tawnya Anderson	P.O.:	C#14-214-CRD		
Sampled By: Company:		Acct code:			

Hot Water Soluble

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Boron	mg/L	-0.0066	-0.01	0.02	yes
Date Acquired:	December 04, 2014				
Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC
Boron	mg/kg	1.39	1.07	2.05	yes
Date Acquired:	December 04, 2014				
Boron	mg/kg	0.09	0.09	0.11	yes
Date Acquired:	December 04, 2014				

Metals Strong Acid Digestion

Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Mercury	ug/L	0	-0.07	0.13		yes
Antimony	ug/L	0.069	-0.1	0.2		yes
Arsenic	ug/L	0.028	-0.2	0.2		yes
Barium	ug/L	0.646	-1	1		yes
Beryllium	ug/L	-0.01	-0.1	0.1		yes
Cadmium	ug/L	-0.007	-0.01	0.01		yes
Chromium	ug/L	0.053	-0.5	0.5		yes
Cobalt	ug/L	0.003	-0.1	0.1		yes
Copper	ug/L	0.036	-0.6	1.2		yes
Lead	ug/L	0.173	-5.0	5.0		yes
Molybdenum	ug/L	0.054	-1.0	1.0		yes
Nickel	ug/L	0	-0.4	0.7		yes
Selenium	ug/L	-0.066	-0.3	0.3		yes
Silver	ug/L	0.086	-0.09	0.14		yes
Thallium	ug/L	-0.005	-0.04	0.04		yes
Tin	ug/L	4.099	0.0	7.2		yes
Uranium	ug/L	0.02	-0.5	0.5		yes
Vanadium	ug/L	0.07	-0.1	0.1		yes
Zinc	ug/L	-0.142	-1	1		yes
Date Acquired:	December 05, 2014					
Client Sample Rep	licates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Mercury	mg/kg	0.09	0.08	10	0.03	yes
Date Acquired:	December 04, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Mercury	mg/kg	0.30	0.28	0.34		yes
Antimony	mg/kg	38.5	36.1	43.9		yes
Arsenic	mg/kg	38.4	36.7	44.3		yes
Barium	mg/kg	206	185	215		yes
Beryllium	mg/kg	20.1	17.4	22.2		yes
Cadmium	mg/kg	2.13	1.80	2.20		yes
Chromium	mg/kg	101	92.2	105.8		yes

 Exova
 T: +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F: +1 (403) 291-2021

 Calgary, Alberta
 F: calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Quality Control

	City of Edmonton Nichols Environmental (Canada) 17331-107 Ave NE Edmonton, AB, Canada T5S 1E5	Project: ID: Name: Location: LSD:	14-214-CRD Phase II ESA Rossdale	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Dec 2, 2014 Dec 5, 2014
Attn:	Tawnya Anderson	P.O.:	C#14-214-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

Metals Strong Acid Digestion - Continued

Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Cobalt	mg/kg	20.2	18.5	22.5		yes
Copper	mg/kg	189	176.3	207.3		yes
Lead	mg/kg	20.7	18.6	21.8		yes
Molybdenum	mg/kg	184	172.6	215.4		yes
Nickel	mg/kg	95.6	90.6	107.4		yes
Selenium	mg/kg	40.6	36.1	42.9		yes
Silver	mg/kg	20.2	16.69	21.97		yes
Thallium	mg/kg	10.9	9.57	11.23		yes
Tin	mg/kg	191	171.9	201.9		yes
Uranium	mg/kg	95.2	90.3	108.0		yes
Vanadium	mg/kg	17.4	16.3	20.3		yes
Zinc	mg/kg	201	180	220		yes
Date Acquired:	December 05, 2014					
Mercury	mg/kg	0.08	0.05	0.11		yes
Date Acquired:	December 04, 2014					
Mercury	mg/kg	0.29	0.15	0.42		yes
Antimony	mg/kg	0.8	0.3	1.1		yes
Arsenic	mg/kg	85.8	65.9	97.9		yes
Barium	mg/kg	247	213	270		yes
Beryllium	mg/kg	0.7	0.5	0.9		yes
Cadmium	mg/kg	2.06	1.50	2.64		yes
Chromium	mg/kg	34.5	27.4	39.2		yes
Cobalt	mg/kg	14.2	11.3	16.0		yes
Copper	mg/kg	199	162.7	222.9		yes
Lead	mg/kg	111	99.6	135.6		yes
Molybdenum	mg/kg	2.8	2.0	3.8		yes
Nickel	mg/kg	57.4	47.1	73.5		yes
Selenium	mg/kg	0.7	0.3	1.3		yes
Silver	mg/kg	0.8	0.25	1.15		yes
Thallium	mg/kg	0.32	0.26	0.40		yes
Tin	mg/kg	4.1	1.0	5.4		yes
Uranium	mg/kg	1.2	0.9	1.5		yes
Vanadium	mg/kg	42.1	31.5	56.1		yes
Zinc	mg/kg	476	355	550		yes
Date Acquired:	December 05, 2014					
Barite Soil Analy	eie					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Barium	mg/L	0.0023084	-0.00	0.01		yes
	December 05, 2014	0.0020004	0.00	0.01		yes
Date Acquired:	•	Deullested	Denlissis		Abashuts Ostrast	Deservices
Client Sample Repl	licates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC

 Exova
 T: +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F: +1 (403) 291-2021

 Calgary, Alberta
 E: Calgary@exova com

 T1Y-5L3, Canada
 W: www.exova com

Quality Control

0.01 yes

Bill To:	City of Edmonton	Project:		Lot ID:	1042666
Report To:	Nichols Environmental (Canada)		14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Dec 2, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Dec 5, 2014
	T5S 1E5	LSD:		Report Number:	,
Attn:	Tawnya Anderson	P.O.:	C#14-214-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

Barite Soil Analysis - Continued

Client Sample Rep	licates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Barium	mg/kg	37.7	36.3	10	5.00	yes
Date Acquired:	December 05, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Barium	mg/kg	10.2	8.87	12.71		yes
Date Acquired:	December 05, 2014					
Barium	mg/kg	0.11	0.09	0.11		yes
Date Acquired:	December 05, 2014					
Water Soluble Pa	arameters					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Chromium (VI)	mg/L	0.004	-0.10	0.10		yes
Date Acquired:	December 05, 2014					
Client Sample Rep	licates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC

Chromium (VI) mg/kg <0.10</th> 10 Date Acquired: December 05, 2014 10

Polycyclic Aromatic Hydrocarbons - Soil

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Naphthalene	ng/mL	0	-0.010	0.010	yes
Acenaphthylene	ng/mL	0	-0.05	0.05	yes
Acenaphthene	ng/mL	0	-0.05	0.05	yes
Fluorene	ng/mL	0	-0.05	0.05	yes
Phenanthrene	ng/mL	0	-0.01	0.01	yes
Anthracene	ng/mL	0	-0.003	0.003	yes
Fluoranthene	ng/mL	0	-0.01	0.01	yes
Pyrene	ng/mL	0	-0.01	0.01	yes
Benzo(a)anthracene	ng/mL	0	-0.01	0.01	yes
Chrysene	ng/mL	0	-0.05	0.05	yes
Benzo(b)fluoranthene	ng/mL	0	-0.05	0.05	yes
Benzo(b+j)fluoranthene	ng/mL	0	-0.05	0.05	yes
Benzo(k)fluoranthene	ng/mL	0	-0.05	0.05	yes
Benzo(a)pyrene	ng/mL	0	-0.05	0.05	yes
Indeno(1,2,3-c,d)pyrene	ng/mL	0	-0.05	0.05	yes
Dibenzo(a,h)anthracene	ng/mL	0	-0.05	0.05	yes
Benzo(g,h,i)perylene	ng/mL	0	-0.05	0.05	yes
Date Acquired: Decem	ber 03, 2014				
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
Naphthalene	ng/mL	97.20	80	120	yes
Acenaphthylene	ng/mL	89.40	80	120	yes
Acenaphthene	ng/mL	93.00	80	120	yes
Fluorene	ng/mL	96.20	80	120	yes

 Exova
 T: +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F: +1 (403) 291-2021

 Calgary, Alberta
 E: Calgary@exova com

 T1Y-5L3, Canada
 W: www.exova com

Quality Control

	City of Edmonton Nichols Environmental (Canada) 17331-107 Ave NE Edmonton, AB, Canada T5S 1E5	Project: ID: Name: Location: LSD:	14-214-CRD Phase II ESA Rossdale	Lot ID: Control Number: Date Received: Date Reported: Report Number:	Dec 2, 2014 Dec 5, 2014
Attn:	Tawnya Anderson	P.O.:	C#14-214-CRD		
Sampled By:	НВ	Acct code:			
Company:	NECL				

Polycyclic Aromatic Hydrocarbons - Soil -Continued

/mL			Upper Limit	Passed QC
	86.00	80	120	yes
/mL	96.60	80	120	yes
/mL	96.80	80	120	yes
/mL	101.60	80	120	yes
/mL	90.40	80	120	yes
/mL	103.20	80	120	yes
/mL	87.00	80	120	yes
/mL	82.40	80	120	yes
/mL	80.60	80	120	yes
/mL	84.60	80	120	yes
/mL	92.00	80	120	yes
/mL	101.00	80	120	yes
	/mL /mL /mL /mL /mL /mL /mL	/mL 96.80 /mL 101.60 /mL 90.40 /mL 103.20 /mL 87.00 /mL 87.00 /mL 80.60 /mL 84.60 /mL 92.00 /mL 101.00	YmL 96.80 80 /mL 101.60 80 /mL 90.40 80 /mL 90.40 80 /mL 103.20 80 /mL 87.00 80 /mL 87.00 80 /mL 80.60 80 /mL 80.60 80 /mL 92.00 80 /mL 101.00 80	/mL 96.80 80 120 /mL 101.60 80 120 /mL 90.40 80 120 /mL 103.20 80 120 /mL 87.00 80 120 /mL 87.00 80 120 /mL 80.60 80 120 /mL 80.60 80 120 /mL 84.60 80 120 /mL 92.00 80 120 /mL 101.00 80 120

PAH - Soil - Surrogate Recovery

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Nitrobenzene-d5	%	97.53	23	130	yes
2-Fluorobiphenyl	%	97.13	30	130	yes
p-Terphenyl-d14	%	131.36	18	137	yes
Date Acquired:	December 03, 2014				

 Exova
 T: +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F: +1 (403) 291-2021

 Calgary, Alberta
 F: calgary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Methodology and Notes

Bill To:	City of Edmonton	Project:		Lot ID:	1042666
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II ESA	Date Received:	Dec 2, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Dec 5, 2014
	T5S 1E5	LSD:		Report Number:	1973472
Attn:	Tawnya Anderson	P.O.:	C#14-214-CRD		
Sampled By:	HB	Acct code:			
Company:	NECL				

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
1:5 Water Soluble Extraction	McKeague	* Soluble Salts in Extracts of 1:5 Soil:Water Mixtures, 3.23	05-Dec-14	Exova Edmonton
Barium (Extractable) in soil (0.1 M CaCl2)	Ab Env	Analytical Method for Extractable Barium, 6.6.2	05-Dec-14	Exova Edmonton
Boron in general soil	McKeague	* Hot Water Soluble Boron - Azomethine-H Method, 4.61	04-Dec-14	Exova Edmonton
Mercury (Hot Block) in Soil	US EPA	* Determination of Hg in Sediment by Cold Vapor Atomic Absorption Spec, 245.5	04-Dec-14	Exova Edmonton
Metals ICP-MS (Hot Block) in soil	SW-846	 * Acid Digestion of Sediments, Sludges, and Soils, EPA 3050B 	05-Dec-14	Exova Edmonton
PAH - Soil	AESRD	Index of Additive Cancer Risk (IACR), PAHs	03-Dec-14	Exova Calgary
PAH - Soil	US EPA	 * Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry, 8270 	03-Dec-14	Exova Calgary
- /		* Reference Method Modified		

References

Ab Env	Alberta Environment, Soil Quality Guidelines for Barite
AESRD	Alberta Tier 1 Soil and Groundwater Remediation Guidelines
APHA	Standard Methods for the Examination of Water and Wastewater
McKeague	Manual on Soil Sampling and Methods of Analysis
SW-846	Test Methods for Evaluating Solid Waste
US EPA	US Environmental Protection Agency Test Methods

Comments:

Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted. The test report shall not be reproduced except in full, without the written approval of the laboratory.

- Internet	esting	Billing Inform	nation		Copy of Re	eport	t To:				111	RUS	H Priority
	Advising	Company:	Nichols EDU		Company:			-					section, client accepts that
www.exova.com	Assuring	Address:	17331-107 ALP		Address:						-	surcharges will b	e applied to the analysis
Project Information	and the state of the		Edm, AB									Date Required	1.500
Project ID: 14-214-CR	D	Attention:	T. Andelson		Attention:							As Indicated	All Analysis
Project Name: Prouse TI	the second s	Phone:	780-484-335	F	Phone:				1	_		When "ASAP" is requ	ested, turn around will defau
Project Location: Recedate		Cell:		2	Cell:	-						to a 100% RUSH pr	iority, with pricing and turn
Legal Location:		Fax:			Fax:						_		 Please contact the lab price ng RUSH samples.
PO/AFE#: 14-214-CR	a	E-mail:			E-mail:	2							
Proj. Acct. Code:		Agreement ID:				-		_	_			Signature	
		Copy of report		1	Copy of inv	oice:	-	1- 1-	1	-	-		tody (please print)
Report Results	Online	PDF	V	QA/QC R	leport							Sampled by: +	
Mail	Fax	Excel				5						Company: NEC	oceed with the work indica
Special Instructions/Comments (plea different from above).	ise include cont	act information	and the second se	Include Reg	WATE-CECA #0	iner	V	2				on this form:	
merent nom abovoj.			F	Requirement	ts Below:	onta	F					Date:	n for Lab use only
Please bill at (ity of Fa	amonton	Rates			0 to	a	Z				Date/Time stamp:	In for Lab use only
	10					Der o	FER	ถิ				Date/ Inne stamp;	
						Number of Containers	di					DEC 2	R 5:28
		Death		ſ	Sampling	-		Enter	tests ab	OV0	-		deficiencies in the
Sample Identification	Location	IN CM M	Date/Time sampled	Matrix	Method		(1	√ relevan			ow)	condition of sampl	
1 AL: 14-20		1.5	NOU. 19/14	Soil	arah		X						Were Exova supplies
2 A3 14-09		1.0	001.30/14	44	0		X						
3 A3:14-12		3.0	act. 30/14	- Ne	t.	1	\rangle						Was there any damag the shipping containe
4 A3-14-13		15	Oct. 30:114	-	1	1)					1	_
5 A6.14-15		6.5	NOV. 3/14	FN .	14	1		X L					
6 AL 14-10		2.0	NOU 3/14	ix.	IN	1		41					Were the containers packaged well?
7 A6 14-17		BO	NOV. 3/14	11	11	1		XL		-			_
8										_			Were any extra samp
9						+-+	_		+-+-	-			received (document
10													below)?
11										+			-
12	-									+-		+	Are samples within
13										+			
14										+-			times/temp?
CONTRACTOR OF TAXABLE PARTY OF TAXABLE PARTY.	al Sample Info	rmation Sheet	India	cate lot num	ber or affix lo	t labe	el here		SI	nippir	ng:	# and size of coolers	received:
Note: Proper completion of this	17					Sec. 237 237			100	DD Y	1.7.11	100000	1999 Barrier
Please indicate a		Mail address of the Society of the S		- 3	10426	11			-		temp:	Delivery Method:	its of
		ol# B 10		5	10700	60)		- Martin			Waybill:	f and first
											4	wayous	

.

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Report Transmission Cover Page

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 19, 2014
	T5S 1E5	LSD:		Report Number:	1971220
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

Contact & Affiliation	Address	Delivery Commitments
Tawnya Anderson	17331-107 Ave NE	On [Lot Verification] send
Nichols Environmental (Canada) Ltd Edmonton, Alberta T5S 1E5 Phone: (780) 484-3377		(COA) by Email - Merge Reports
	Fax: (780) 484-5093	On [Report Approval] send
	Email	(Test Report, COC, Test Report) by Email - Merge Reports
Kelly Goetz	17331-107 Ave NE	On [Lot Approval and Final Test Report Approval] send
Nichols Environmental (Canada) Ltd Edmonton, Alberta T5S 1E5 Phone: (780) 484-3377 Fax: (780) 484-5093		(Invoice) by Email - Merge Reports
	Email:	

Notes To Clients:

• Sample 1041068-3, 10 and 11 were past 48 hours holding time for Nitrite and Nitrate analyses.

• Dioxins and Furans analysis was performed by a subcontract laboratory. See attached 6 page report PR143092.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 19, 2014
	T5S 1E5	LSD:		Report Number:	1971220
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	·	
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

		Reference Number Sample Date Sample Time Sample Location	1041068-3 Nov 21, 2014 NA	1041068-6 Nov 21, 2014 NA	1041068-10 Nov 21, 2014 NA	
		Sample Description Matrix	A5 / 14-01 / 18.3°C Water	A1 / 14-18 / 18.3°C Water	A3 / 14-09 / 18.3°C Water	
Analyte		Units	Results	Results	Results	Nominal Detectio Limit
Inorganic Nonmetallic Para	ameters					Linin
Chromium (VI)	Dissolved	mg/L	<0.01	<0.01	<0.01	0.01
Chromium (III)	Calculated	mg/L	<0.0005	<0.0005	<0.0005	0.0005
Metals Dissolved		Ū				
Mercury	Dissolved	mg/L	<0.00005	<0.000005	<0.00005	0.000005
Aluminum	Dissolved	mg/L	0.004	<0.002	<0.002	0.002
Antimony	Dissolved	mg/L	<0.0002	<0.0002	0.0002	0.0002
Arsenic	Dissolved	mg/L	0.0003	0.0004	0.0003	0.0002
Barium	Dissolved	mg/L	0.124	0.459	0.159	0.001
Boron	Dissolved	mg/L	0.028	0.229	0.099	0.002
Cadmium	Dissolved	mg/L	0.000010	0.000136	0.000072	0.00001
Chromium	Dissolved	mg/L	<0.0005	<0.0005	< 0.0005	0.0005
Copper	Dissolved	mg/L	< 0.001	<0.001	0.002	0.001
Lead	Dissolved	mg/L	< 0.0001	<0.0001	< 0.0001	0.0001
Nickel	Dissolved	mg/L	< 0.0005	0.0037	0.0024	0.0005
Selenium	Dissolved	mg/L	0.0003	0.0011	0.0005	0.0002
Silver	Dissolved	mg/L	< 0.00001	<0.0001	< 0.00001	0.00001
Uranium	Dissolved	mg/L	0.0012	0.0047	0.0019	0.0005
Zinc	Dissolved	mg/L	0.004	0.003	0.062	0.001
Subsample	Field Filtered	ing/L	Field Filtered	Field Filtered	Field Filtered	0.001
Routine Water			r loid r illered		T Iola T Intered	
pH			7.91		7.47	
Temperature of observed pH		°C	18.3		18.4	
Electrical Conductivity		µS/cm at 25 C	452		1210	1
Calcium	Dissolved	mg/L	67.8		140	0.2
Magnesium	Dissolved	mg/L	16.9		29.2	0.2
Sodium	Dissolved	mg/L	13.7		126	0.4
Potassium	Dissolved	mg/L	2.3		5.0	0.4
Iron	Dissolved	mg/L	<0.01	<0.01	<0.01	0.01
Manganese	Dissolved	mg/L	0.330	0.756	0.548	0.005
Chloride	Dissolved	mg/L	7.2		159	0.4
Nitrate - N		mg/L	0.27		1.59	0.01
Nitrite - N		mg/L	< 0.005		0.012	0.005
Nitrate and Nitrite - N		mg/L	0.27		1.60	0.01
Sulfate (SO4)	Dissolved	mg/L	61.9		75.2	0.9
Hydroxide		mg/L	<5		<5	5
Carbonate		mg/L	<6		<6	6

Terms and Conditions: www.exova com/about/terms-and-conditions

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:			14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 19, 2014
•	T5S 1E5	LSD:		Report Number:	1971220
	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By: Company:		Acct code:			

		Reference Number	1041068-3	1041068-6	1041068-10	
		Sample Date Sample Time	Nov 21, 2014 NA	Nov 21, 2014 NA	Nov 21, 2014 NA	
		Sample Location		NA NA	IN/A	
		Sample Description	A5 / 14-01 / 18.3°C	A1 / 14-18 / 18.3°C	A3 / 14-09 / 18.3°C	
		Matrix	Water	Water	Water	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Routine Water - Continue	ed					
Bicarbonate		mg/L	233		477	5
P-Alkalinity	as CaCO3	mg/L	<5		<5	5
T-Alkalinity	as CaCO3	mg/L	191		391	5
Total Dissolved Solids	Calculated	mg/L	285		770	1
Hardness	Dissolved as CaCO3	3 mg/L	239	1360	470	
Ionic Balance	Dissolved	%	102		107	

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 19, 2014
	T5S 1E5	LSD:		Report Number:	1971220
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

	F	Reference Number Sample Date Sample Time Sample Location	1041068-3 Nov 21, 2014 NA	1041068-7 Nov 21, 2014 NA	1041068-8 Nov 21, 2014 NA	
	S	•	A5 / 14-01 / 18.3°C	A2 / C1 / 18.3°C	A2 / C6 / 18.3°C	
		Matrix	Water	Water	Water	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Polycyclic Aromatic Hydroca	arbons - Water					
Naphthalene		ug/L	<0.1	<0.1	<0.1	0.1
Quinoline		ug/L	<0.3	<0.3	<0.3	0.3
Acenaphthylene		ug/L	<0.1	<0.1	<0.1	0.1
Acenaphthene		ug/L	<0.1	<0.1	<0.1	0.1
Fluorene		ug/L	<0.1	<0.1	<0.1	0.1
Phenanthrene		ug/L	<0.1	<0.1	<0.1	0.1
Anthracene		ug/L	<0.005	<0.005	<0.005	0.005
Acridine		ug/L	<0.1	<0.1	<0.1	0.1
Fluoranthene		ug/L	<0.01	<0.01	<0.01	0.01
Pyrene		ug/L	<0.01	<0.01	<0.01	0.01
Benzo(a)anthracene		ug/L	<0.01	<0.01	<0.01	0.01
Chrysene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(b+j)fluoranthene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(k)fluoranthene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(a)pyrene		ug/L	<0.008	<0.008	<0.008	0.008
Indeno(1,2,3-c,d)pyrene		ug/L	<0.05	<0.05	<0.05	0.05
Dibenzo(a,h)anthracene		ug/L	<0.05	<0.05	<0.05	0.05
Benzo(g,h,i)perylene		ug/L	<0.05	<0.05	<0.05	0.05
	Carcinogenic Potency Equivalent	ug/L	<0.01	<0.01	<0.01	.01
PAH - Water - Surrogate Rec	overy					
Nitrobenzene-d5	PAH - Surrogate	%	90	100	90	23-130
2-Fluorobiphenyl	PAH - Surrogate	%	100	120	100	30-130
p-Terphenyl-d14	PAH - Surrogate	%	90	100	70	18-137

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 19, 2014
	T5S 1E5	LSD:		Report Number:	1971220
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

	Reference Number	1041068-4	1041068-5		
	Sample Date	Nov 21, 2014	Nov 21, 2014		
	Sample Time	NA	NA		
	Sample Location				
	Sample Description	A7 / 14-05 / 18.3°C	A7 / 14-06 / 18.3°C		
	Matrix	Water	Water		
Analyte	Units	Results	Results	Results	Nominal Detection Limit
Mono-Aromatic Hydrocarbons - Water					
Benzene	mg/L	<0.001	<0.001		0.001
Toluene	mg/L	<0.001	<0.001		0.0004
Ethylbenzene	mg/L	<0.001	<0.001		0.001
Total Xylenes (m,p,o)	mg/L	<0.001	<0.001		0.001
Volatile Petroleum Hydrocarbons - Water					
F1 -BTEX	mg/L	<0.2	<0.2		0.1
F1 C6-C10	mg/L	<0.2	<0.2		0.1
F2 C10-C16	mg/L	<0.2	<0.2		0.1
Extractable Petroleum Hydrocarbons - Water					
F3 C16-C34	mg/L	<0.1	<0.1		0.1
F3+ C34+	mg/L	<0.1	<0.1		0.1

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)		14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 19, 2014
	T5S 1E5	LSD:		Report Number:	1971220
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	·	
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

		Reference Number	1041068-7	1041068-8	1041068-9	
		Sample Date	Nov 21, 2014	Nov 21, 2014	Nov 21, 2014	
		Sample Time	NA	NA	NA	
		Sample Location				
		Sample Description	A2 / C1 / 18.3°C	A2 / C6 / 18.3°C	A2 / C7 / 18.3°C	
		Matrix	Water	Water	Water	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Chlorinated Phenols - Wa	ater					
Pentachlorophenol		ug/L	<0.1	<0.1	<0.1	0.1
Chlorinated Phenols - Wa	ter - Surrogate Reco	very				
2,4,6-Tribromophenol	PCP - Surrogate	%	58	67	84	40-140
Subcontracted Analysis						
Subcontractor Report Id	Pacific Rim		PR143092	PR143092	P143092	

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	
	Edmonton, AB, Canada	Location:		Date Reported:	- , -
	T5S 1E5	LSD:		Report Number:	
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

		eference Number Sample Date Sample Time Sample Location	1041068-9 Nov 21, 2014 NA	1041068-10 Nov 21, 2014 NA	1041068-11 Nov 21, 2014 NA	
		mple Description	A2 / C7 / 18.3°C	A3 / 14-09 / 18.3°C	A3 / MW203 / 18.3°C	
		Matrix	Water	Water	Water	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Polycyclic Aromatic Hydrocar	rbons - Water					Linit
Naphthalene		ug/L	<0.1	<0.1	<0.1	0.1
Quinoline		ug/L	<0.3	<0.3	<0.3	0.3
Acenaphthylene		ug/L	<0.1	<0.1	<0.1	0.1
Acenaphthene		ug/L	<0.1	<0.1	<0.1	0.1
Fluorene		ug/L	<0.1	<0.1	<0.1	0.1
Phenanthrene		ug/L	<0.1	<0.1	<0.1	0.1
Anthracene		ug/L	<0.005	<0.005	<0.005	0.005
Acridine		ug/L	<0.1	<0.1	<0.1	0.1
Fluoranthene		ug/L	<0.01	<0.01	0.02	0.01
Pyrene		ug/L	<0.01	<0.01	0.01	0.01
Benzo(a)anthracene		ug/L	<0.01	<0.01	<0.01	0.01
Chrysene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(b+j)fluoranthene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(k)fluoranthene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(a)pyrene		ug/L	<0.008	<0.008	<0.008	0.008
Indeno(1,2,3-c,d)pyrene		ug/L	<0.05	<0.05	<0.05	0.05
Dibenzo(a,h)anthracene		ug/L	<0.05	<0.05	<0.05	0.05
Benzo(g,h,i)perylene		ug/L	<0.05	<0.05	<0.05	0.05
	arcinogenic Potency quivalent	ug/L	<0.01	<0.01	<0.01	.01
PAH - Water - Surrogate Reco	overy					
Nitrobenzene-d5 P	AH - Surrogate	%	90	90	80	23-130
2-Fluorobiphenyl P	AH - Surrogate	%	90	100	100	30-130
p-Terphenyl-d14 P	AH - Surrogate	%	90	100	80	18-137

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 19, 2014
	T5S 1E5	LSD:		Report Number:	1971220
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

		Reference Number	1041068-11	1041068-12	1041068-13	
		Sample Date	Nov 21, 2014	Nov 20, 2014	Nov 20, 2014	
		Sample Time	NA	NA	NA	
		Sample Location				
		Sample Description	A3 / MW203 / 18.3°C	14-15 / 18.3°C	14-17 / 18.3°C	
		Matrix	Water	Water	Water	
Analyte		Units	Results	Results	Results	Nominal Detectior Limit
Inorganic Nonmetallic Pa	ameters					
Chromium (VI)	Dissolved	mg/L	<0.01	<0.01	<0.01	0.01
Chromium (III)	Calculated	mg/L	<0.0005	<0.0005	<0.0005	0.0005
Metals Dissolved						
Mercury	Dissolved	mg/L	<0.000005	<0.00005	< 0.000005	0.000005
Aluminum	Dissolved	mg/L	<0.002	<0.002	<0.002	0.002
Antimony	Dissolved	mg/L	<0.0002	<0.0002	< 0.0002	0.0002
Arsenic	Dissolved	mg/L	<0.0002	0.0003	0.0002	0.0002
Barium	Dissolved	mg/L	0.136	0.103	0.103	0.001
Boron	Dissolved	mg/L	0.091	0.440	0.411	0.002
Cadmium	Dissolved	mg/L	<0.00001	0.000022	0.000030	0.00001
Chromium	Dissolved	mg/L	<0.0005	<0.0005	< 0.0005	0.0005
Copper	Dissolved	mg/L	<0.001	<0.001	<0.001	0.001
Lead	Dissolved	mg/L	<0.0001	<0.0001	<0.0001	0.0001
Nickel	Dissolved	mg/L	0.0007	0.0020	0.0015	0.0005
Selenium	Dissolved	mg/L	0.0005	0.0006	< 0.0002	0.0002
Silver	Dissolved	mg/L	<0.00001	<0.00001	<0.00001	0.00001
Uranium	Dissolved	mg/L	0.0016	0.0039	0.0037	0.0005
Zinc	Dissolved	mg/L	0.004	0.001	0.003	0.001
Subsample	Field Filtered	ů.	Field Filtered	Field Filtered	Field Filtered	
Routine Water						
pН			7.61			
Temperature of observed pH		C°	18.3			
Electrical Conductivity		μS/cm at 25 C	831			1
Calcium	Dissolved	mg/L	146			0.2
Magnesium	Dissolved	mg/L	30.6			0.2
Sodium	Dissolved	mg/L	15.4			0.4
Potassium	Dissolved	mg/L	2.3			0.4
Iron	Dissolved	mg/L	<0.01	<0.01	<0.01	0.01
Manganese	Dissolved	mg/L	0.008	0.344	1.29	0.005
Chloride	Dissolved	mg/L	18.7			0.4
Nitrate - N		mg/L	1.01			0.01
Nitrite - N		mg/L	<0.005			0.005
Nitrate and Nitrite - N		mg/L	1.01			0.01
Sulfate (SO4)	Dissolved	mg/L	77.8			0.9
Hydroxide		mg/L	<5			5
Carbonate		mg/L	<6			6

Terms and Conditions: www.exova com/about/terms-and-conditions

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)		14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 19, 2014
	T5S 1E5	LSD:		Report Number:	1971220
	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

		Reference Number	1041068-11	1041068-12	1041068-13	
		Sample Date	Nov 21, 2014	Nov 20, 2014	Nov 20, 2014	
		Sample Time	NA	NA	NA	
		Sample Location				
		Sample Description	A3 / MW203 / 18.3°C	14-15 / 18.3°C	14-17 / 18.3°C	
		Matrix	Water	Water	Water	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Routine Water - Continue	ed					
Bicarbonate		mg/L	508			5
P-Alkalinity	as CaCO3	mg/L	<5			5
T-Alkalinity	as CaCO3	mg/L	417			5
Total Dissolved Solids	Calculated	mg/L	540			1
Hardness	Dissolved as CaCO3	3 mg/L	489	548	428	
Ionic Balance	Dissolved	%	100			

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 19, 2014
	T5S 1E5	LSD:		Report Number:	1971220
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

		Reference Number Sample Date Sample Time Sample Location	1041068-12 Nov 20, 2014 NA	1041068-13 Nov 20, 2014 NA		
	S	Sample Description	14-15 / 18.3°C	14-17 / 18.3°C		
		Matrix	Water	Water		
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Polycyclic Aromatic Hydro	ocarbons - Water					
Naphthalene		ug/L	<0.1	<0.1		0.1
Quinoline		ug/L	<0.3	<0.3		0.3
Acenaphthylene		ug/L	<0.1	<0.1		0.1
Acenaphthene		ug/L	<0.1	<0.1		0.1
Fluorene		ug/L	<0.1	<0.1		0.1
Phenanthrene		ug/L	<0.1	<0.1		0.1
Anthracene		ug/L	0.035	<0.005		0.005
Acridine		ug/L	<0.1	<0.1		0.1
Fluoranthene		ug/L	0.09	0.03		0.01
Pyrene		ug/L	0.10	0.04		0.01
Benzo(a)anthracene		ug/L	0.06	0.01		0.01
Chrysene		ug/L	<0.1	<0.1		0.1
Benzo(b+j)fluoranthene		ug/L	<0.1	<0.1		0.1
Benzo(k)fluoranthene		ug/L	<0.1	<0.1		0.1
Benzo(a)pyrene		ug/L	0.072	0.020		0.008
Indeno(1,2,3-c,d)pyrene		ug/L	<0.05	<0.05		0.05
Dibenzo(a,h)anthracene		ug/L	<0.05	<0.05		0.05
Benzo(g,h,i)perylene		ug/L	<0.05	<0.05		0.05
CB(a)P	Carcinogenic Potency Equivalent	ug/L	0.08	0.02		.01
PAH - Water - Surrogate R						
Nitrobenzene-d5	PAH - Surrogate	%	90	90		23-130
2-Fluorobiphenyl	PAH - Surrogate	%	100	90		30-130
p-Terphenyl-d14	PAH - Surrogate	%	70	60		18-137

Approved by: Darlene Lintott, MSc

Consulting Scientist

Data have been validated by Analytical Quality Control and Exova's Integrated Data Validation System (IDVS). Generation and distribution of the report, and approval by the digitized signature above, are performed through a secure and controlled automatic process.

Terms and Conditions: www.exova com/about/terms-and-conditions

 Exova
 T: +1 (780) 438-5522

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E: Edmonton@exova.com

 T6B 3J4, Canada
 W: www.exova.com

Methodology and Notes

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 19, 2014
	T5S 1E5	LSD:		Report Number:	1971220
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

Method of Analysis

Method Name	Reference	Method Date Analysis Location Started
Alkalinity, pH, and EC in water	APHA	* Alkalinity - Titration Method, 2320 B 26-Nov-14 Exova Edmonton
Alkalinity, pH, and EC in water	APHA	* Conductivity, 2510 B 26-Nov-14 Exova Edmonton
Alkalinity, pH, and EC in water	APHA	* pH - Electrometric Method, 4500-H+ B 26-Nov-14 Exova Edmonton
Anions (Routine) by Ion Chromatography	APHA	 * Ion Chromatography with Chemical 26-Nov-14 Exova Edmonton Suppression of Eluent Cond., 4110 B
Approval-Edmonton	APHA	Checking Correctness of Analyses, 1030 24-Nov-14 Exova Edmonton E
BTEX-CCME - Water	US EPA	 * Volatile Organic Compounds in Various 26-Nov-14 Exova Calgary Sample Matrices Using Equilibrium Headspace Analysis/Gas Chromatography Mass Spectrometry, 5021/8260
Chloride in Water	APHA	 * Automated Ferricyanide Method, 4500-CI- 26-Nov-14 Exova Edmonton
Chromium (VI) in water	APHA	* Colorimetric Method, 3500-Cr B 26-Nov-14 Exova Edmonton
Mercury (Dissolved) in water	APHA	* Cold Vapour Atomic Absorption 28-Nov-14 Exova Edmonton Spectrometric Method, 3112 B
Metals ICP-MS (Dissolved) in water	APHA/USEPA	 Metals By Inductively Coupled 26-Nov-14 Exova Edmonton Plasma/Mass Spectrometry, APHA 3125 B / USEPA 200.2, 200.8
Metals Trace (Dissolved) in water	APHA	Hardness by Calculation, 2340 B 26-Nov-14 Exova Edmonton
Metals Trace (Dissolved) in water	APHA	 Inductively Coupled Plasma (ICP) 26-Nov-14 Exova Edmonton Method, 3120 B
PAH - Water	AESRD	Carcinogenic PAHs Toxic Potency 25-Nov-14 Exova Calgary Equivalence (as B(a)P TPE), PAHw
PAH - Water	US EPA	 * Semivolatile Organic Compounds by Gas 25-Nov-14 Exova Calgary Chromatography/Mass Spectrometry, 8270
PCP - Water	US EPA	 * Semivolatile Organic Compounds by Gas 27-Nov-14 Exova Calgary Chromatography/Mass Spectrometry, 8270
Sublet to Pacific Rim Labs	Ext. Lab	See attached test report, 29-Nov-14 Pacific Rim Laboratories I
TEH-CCME - Water	EPA/CCME	* Separatory Funnel Liquid-liquid 26-Nov-14 Exova Calgary Extraction/CCME, EPA 3510/CCME
		* Reference Method Modified

References

AESRD	Alberta Tier 1 Soil and Groundwater Remediation Guidelines
APHA	Standard Methods for the Examination of Water and Wastewater
EPA/CCME	Environmental Protection Agency Test Methods - US/CCME
US EPA	US Environmental Protection Agency Test Methods

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Methodology and Notes

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 19, 2014
	T5S 1E5	LSD:		Report Number:	1971220
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

Comments:

- Sample 1041068-3, 10 and 11 were past 48 hours holding time for Nitrite and Nitrate analyses.
- Dioxins and Furans analysis was performed by a subcontract laboratory. See attached 6 page report PR143092.

 Exova
 T +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F +1 (403) 291-2021

 Caigary, Alberta
 E: NWL-Caigary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Hydrocarbon Chromatogram

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	Name:		Control Number:	C0018891
		Location:		Date Received:	Nov 24, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 27, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1971285
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:	Hans B.				
Company:	NECL				
Sampled by:	Edmonton, AB, Canada T5S 1E5 Tawnya Anderson Hans B.		D913127A, C#(required)	and the second se	THE REAL PROPERTY AND ADDRESS

Exova Number: 1041068-4 Sample Date: Nov 21, 2014 Sample Description: 18.3°C A7 14-05

 Exova
 T +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F +1 (403) 291-2021

 Caigary, Alberta
 E: NWL-Caigary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Hydrocarbon Chromatogram

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	Name:		Control Number:	C0018891
		Location:		Date Received:	Nov 24, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 27, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1971285
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:	Hans B.				
Company:	NECL				

Exova Number: 1041068-5 Sample Date: Nov 21, 2014 Sample Description: 18.3°C A7 14-06

SAMPLE RECEIPT FORM / CHEMICAL ANALYSIS FORM

FILE #: PR143092

CLIENT:

Exova 7217 Roper Road NW Edmonton, AB T6B 3J4

> Phone: (780) 438-5522 Fax: (780) 434-8586 Email: Edmonton@exova.com

RECEIVED BY: M. Wright **CONDITION:** good, 16.8°C **DATE/TIME:** November 26, 2014 (9:00 a.m.)

<u># of</u> Containers	<u>Sample</u> <u>Type</u>	Sample (Client Codes)	Lab Codes	Test Requested
1	Water	1041068-7 Site ID: A2 / Description: C1	PR143092	PCDD/F
1	Water	1041068-8 Site ID: A2 / Description: C6	PR143093	PCDD/F
1	Water	1041068-9 Site ID: A2 / Description: C7	PR143094	PCDD/F

STORAGE: Stored at 4°C.

ANALYTES: HRGC/HRMS analysis for polychlorinated dibenzo(p)dioxins and dibenzofurans (PCDD/F).

SPECIAL INSTRUCTIONS: none

METHODOLOGY

Reference Method: PCDD/F: SOP LAB01; EPA Method 1613B

Data summarized in Data Report Attached

Report sent to: Client Services Date: December 17, 2014

Comments: Results relate only to items tested.

David Hope PChem, CEO

DATA REPORT

Client:	
Client ID:	

PRL ID:

Exova
1041068-7
Site ID: A2 / Description: C
PR143092

Contact:
Date Extracted:
Date Analysed:

I-TEQs

Client Services	
8-Dec-14	_
16-Dec-14	

DIOXINS	Conc.	DL	Surrogate Recoveries
Congeners	pg/L	pg/L	%
2,3,7,8-TCDD	ND	1	50
Total TCDD	ND	1	
1,2,3,7,8-PeCDD	ND	2	40
Total PeCDD	ND	2	
1,2,3,4,7,8-HxCDD	ND	2	38
1,2,3,6,7,8-HxCDD	ND	2	34
1,2,3,7,8,9-HxCDD	ND	2	2 2 1
Total HxCDD	ND	2	
1,2,3,4,6,7,8-HpCDD	ND	3	34
Total HpCDD	ND	3	
OCDD	ND	4	78
		Total Dic	xin TEQ

(ND=0)	(ND=DL)
pg/L ND	pg/L
ND	1
ND	1
ND	0.2
ND	0.2
ND	0.2
ND	0.03
ND	0.004
0.00	2.63

WHO-TEQs		
(ND=0)	(ND=DL)	
pg/L ND	pg/L	
ND	1	
ND	2	
ND	0.2	
ND	0.2	
ND	0.2	
ND	0.03	
ND	0.0004	
0.00	3.63	

FURANS	15.0	DL	Surrogate Recoveries
Congeners	pg/L	pg/L	%
2,3,7,8-TCDF	ND	1	54
Total TCDF	ND	1	10 I I I I
1,2,3,7,8-PeCDF	ND	2	52
2,3,4,7,8-PeCDF	ND	2	34
Total PeCDF	ND	2	
1,2,3,4,7,8-HxCDF	ND	2	34
1,2,3,6,7,8-HxCDF	ND	2	38
1,2,3,7,8,9-HxCDF	ND	2	40
2,3,4,6,7,8-HxCDF	ND	2	34
Total HxCDF	2.6	2	
1,2,3,4,6,7,8-HpCDF	ND	3	34
1,2,3,4,7,8,9-HpCDF	ND	3	30
Total HpCDF	ND	3	
OCDF	ND	4	-
		Total Fu	ran TEQ

I-TEQs		
(ND=0)	(ND=DL)	
pg/L ND	pg/L	
ND	0.1	
ND	0.1	
ND	1	
ND	0.2	
ND	0.03	
ND	0.03	
ND	0.004	
0.00	2.06	

0.00

4.70

WHO-TEQs		
(ND=0)	(ND=DL)	
pg/L ND	pg/L	
ND	0.1	
ND	0.1	
ND	1	
ND	0.2	
ND	0.03	
ND	0.03	
ND	0.0004	
0.00	2.06	

Total PCDD/PCDF Toxic Equivalent

ND - none detected

0.00

5.69

Pacific Rim Laboratories Inc. #103, 19575-55A Avenue, Surrey, BC V3S 8P8 CANADA Tel: + 604.532.8711 Fax: + 604.532.8712 Email: info@pacificrimlabs.com

DATA REPORT

Contact:

Date Extracted:

Date Analysed:

Client:	
Client ID:	

PRL ID:

Exova	
1041068-	8
Site ID: A	2 / Description: C6
PR14300	3

LAUVA
1041068-8
Site ID: A2 / Description: C6
PR143093

DIOXINS	Conc.	DL	Surrogate Recoveries
Congeners	pg/L	pg/L	%
2,3,7,8-TCDD	ND	1	152
Total TCDD	2.4	1	
1,2,3,7,8-PeCDD	ND	2	122
Total PeCDD	3	2	
1,2,3,4,7,8-HxCDD	ND	2	76
1,2,3,6,7,8-HxCDD	ND	2	64
1,2,3,7,8,9-HxCDD	ND	2	~
Total HxCDD	ND	2	-
1,2,3,4,6,7,8-HpCDD	ND	3	60
Total HpCDD	ND	3	
OCDD	ND	4	92
		Total Dic	xin TEQ

I-TEQs		
(ND=0)	(ND=DL)	
pg/L	pg/L	
ND	1	
ND	1	
ND	0.2	
ND	0.2	
ND	0.2	
ND	0.03	
ND	0.004	
0.00	2.63	

WHO-TEQs		
(ND=0)	(ND=DL)	
pg/L	pg/L	
ND	1	
ND	2	
ND	0.2	
ND	0.2	
ND	0.2	
ND	0.03	
ND	0.0004	
0.00	3.63	

Client Services

8-Dec-14

14-Dec-14

FURANS	1	DL	Surrogate Recoveries
Congeners	pg/L	pg/L	%
2,3,7,8-TCDF	ND	1	54
Total TCDF	3.7	1	
1,2,3,7,8-PeCDF	ND	2	136
2,3,4,7,8-PeCDF	ND	2	118
Total PeCDF	ND	2	
1,2,3,4,7,8-HxCDF	ND	2	70
1,2,3,6,7,8-HxCDF	ND	2	80
1,2,3,7,8,9-HxCDF	ND	2	70
2,3,4,6,7,8-HxCDF	ND	2	92
Total HxCDF	ND	2	
1,2,3,4,6,7,8-HpCDF	ND	3	90
1,2,3,4,7,8,9-HpCDF	ND	3	66
Total HpCDF	ND	3	
OCDF	ND	4	-
		Total Fu	ran TEQ

Total PCDD/PCDF Toxic Equivalent

I-TEQs		
(ND=0)	(ND=DL)	
pg/L ND	pg/L 0.1	
ND	0.1	
ND	0.1	
ND	1	
ND	0.2	
ND	0.03	
ND	0.03	
ND	0.004	
0.00	2.06	

WHO-TEQs		
(ND=0)	(ND=DL)	
pg/L ND	pg/L	
ND	0.1	
ND	0.1	
ND	1	
ND	0.2	
ND	0.03	
ND	0.03	
ND	0.0004	
0.00	2.06	

0.00 4.70

0.00 ND - none detected

5.69

Pacific Rim Laboratories Inc. #103, 19575-55A Avenue, Surrey, BC V3S 8P8 CANADA Tel: + 604.532.8711 Fax: + 604.532.8712 Email: info@pacificrimlabs.com

DATA REPORT

Contact:

Date Extracted:

Date Analysed:

Page 4 of 6

068-9
D: A2 / Description: C7

PRL ID:

1041068-9
Site ID: A2 / Description:

DIOXINS	Conc.	DL	Surrogate Recoveries
Congeners	pg/L	pg/L	%
2,3,7,8-TCDD	ND	1	76
Total TCDD	ND	1	
1,2,3,7,8-PeCDD	ND	2	132
Total PeCDD	ND	2	
1,2,3,4,7,8-HxCDD	ND	2	100
1,2,3,6,7,8-HxCDD	ND	2	100
1,2,3,7,8,9-HxCDD	ND	2	~ ~
Total HxCDD	ND	2	
1,2,3,4,6,7,8-HpCDD	ND	3	118
Total HpCDD	ND	3	
OCDD	6.3	4	158
	-	Total Dic	xin TEQ

I-TEQs		
(ND=0)	(ND=DL)	
pg/L	pg/L	
ND	1	
ND	1	
ND	0.2	
ND	0.2	
ND	0.2	
ND	0.03	
0.0063	0.0063	
0.01	2.64	

WHO-TEQs	
(ND=0)	(ND=DL)
pg/L ND	pg/L
ND	1
ND	2
ND	0.2
ND	0.2
ND	0.2
ND	0.03
0.00063	0.00063
0.00	3.63

Client Services

8-Dec-14

16-Dec-14

FURANS	11	DL	Surrogate Recoveries
Congeners	pg/L	pg/L	%
2,3,7,8-TCDF	ND	1	64
Total TCDF	ND	1	
1,2,3,7,8-PeCDF	ND	2	118
2,3,4,7,8-PeCDF	ND	2	128
Total PeCDF	ND	2	
1,2,3,4,7,8-HxCDF	ND	2	94
1,2,3,6,7,8-HxCDF	ND	2	100
1,2,3,7,8,9-HxCDF	ND	2	78
2,3,4,6,7,8-HxCDF	ND	2	106
Total HxCDF	ND	2	
1,2,3,4,6,7,8-HpCDF	ND	3	90
1,2,3,4,7,8,9-HpCDF	ND	3	116
Total HpCDF	ND	3	
OCDF	ND	4	
		Total Fu	ran TEQ

Total PCDD/PCDF Toxic Equivalent

I-TEQs		
(ND=0)	(ND=DL)	
pg/L ND	pg/L	
ND	0.1	
ND	0.1	
ND	1	
ND	0.2	
ND	0.03	
ND	0.03	
ND	0.004	
0.00	2.06	

WHO-TEQs		
(ND=0)	(ND=DL)	
pg/L ND	pg/L	
ND	0.1	
ND	0.1	
ND	1	
ND	0.2	
ND	0.03	
ND	0.03	
ND	0.0004	
0.00	2.06	

0.01 4.70

0.00 ND - none detected

5.69

Pacific Rim Laboratories Inc. #103, 19575-55A Avenue, Surrey, BC V3S 8P8 CANADA Tel: + 604.532.8711 Fax: + 604.532.8712 Email: info@pacificrimlabs.com

QC REPORT - BLANK

Client: Client ID: PRL ID:

Exova BLANK DF141015B Contact: Date Extracted: Date Analysed:

I-TEQs

Client Services	
8-Dec-14	
12-Dec-14	

WILLO TEO

DIOXINS	10	0	Surrogate
	Conc.	DL	Recoveries
Congeners	pg/L	pg/L	%
2,3,7,8-TCDD	ND	1	80
Total TCDD	ND	1	
1,2,3,7,8-PeCDD	ND	2	118
Total PeCDD	ND	2	
1,2,3,4,7,8-HxCDD	ND	2	94
1,2,3,6,7,8-HxCDD	ND	2	100
1,2,3,7,8,9-HxCDD	ND	2	
Total HxCDD	ND	2	
1,2,3,4,6,7,8-HpCDD	ND	3	116
Total HpCDD	ND	3	
OCDD	ND	4	118
		Total Dic	xin TEQ

(ND=0)	(ND=DL)
pg/L	pg/L
ND	1
ND	1
ND	0.2
ND	0.2
ND	0.2
ND	0.03
ND	0.004
0.00	2.63

WHO-TEQs	
(ND=0)	(ND=DL)
pg/L	pg/L
ND	1
ND	2
ND	0.2
ND	D 0.2
ND	
ND	0.03
ND	0.0004
0.00	3.63

FURANS	15.7	DL	Surrogate Recoveries
Congeners	pg/L	pg/L	%
2,3,7,8-TCDF	ND	1	76
Total TCDF	ND	1	10.00
1,2,3,7,8-PeCDF	ND	2	104
2,3,4,7,8-PeCDF	ND	2	120
Total PeCDF	ND	2	
1,2,3,4,7,8-HxCDF	ND	2	90
1,2,3,6,7,8-HxCDF	ND	2	92
1,2,3,7,8,9-HxCDF	ND	2	94
2,3,4,6,7,8-HxCDF	ND	2	92
Total HxCDF	ND	2	
1,2,3,4,6,7,8-HpCDF	ND	3	112
1,2,3,4,7,8,9-HpCDF	ND	3	118
Total HpCDF	ND	3	1
OCDF	ND	4	
		Total Fu	ran TEQ

Total PCDD/PCDF Toxic Equivalent

I-TEQs		
(ND=0)	(ND=DL)	
pg/L	pg/L	
pg/L ND	0.1	
ND	0.1	
ND	1	
ND	0.2	
ND	0.03	
ND	0.03	
ND	0.004	
0.00	2.06	

WHO-TEQs (ND=0) (ND=DL		
	pg/L	
pg/L ND	0.1	
ND	0.1	
ND	1	
ND	0.2	
ND	0.03	
ND	0.03	
ND	0.0004	
0.00	2.06	

0.00 4.70

ND - none detected

0.00

5.69

Pacific Rim Laboratories Inc. #103, 19575-55A Avenue, Surrey, BC V3S 8P8 CANADA Tel: + 604.532.8711 Fax: + 604.532.8712 Email: info@pacificrimlabs.com
Acronyms used in reporting dioxins and furans:

TCDD = Tetrachlorodibenzo-p-dioxin	TCDF = Tetrachlorodibenzofuran
PeCDD = Pentachlorodibenzo-p-dioxin	PeCDF = Pentachlorodibenzofuran
HxCDD = Hexachlorodibenzo- <i>p</i> -dioxin	HxCDF = Hexachlorodibenzofuran
HpCDD = Heptachlorodibenzo-p-dioxin	HpCDF = Heptachlorodibenzofuran
OCDD = Octachlorodibenzo-p-dioxin	OCDF = Octachlorodibenzofuran

Acceptable recoveries for surrogates	EPA	1613
	Min (%)	Max (%)
¹³ C ₁₂ -2,3,7,8-TCDD	25	164
¹³ C ₁₂ -1,2,3,7,8-PeCDD	25	181
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	32	141
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	28	130
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	23	140
$^{13}C_{12}$ -OCDD	17	157
¹³ C ₁₂ -2,3,7,8-TCDF	24	169
¹³ C ₁₂ -1,2,3,7,8-PeCDF	24	185
¹³ C ₁₂ -2,3,4,7,8-PeCDF	21	178
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	26	152
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	26	123
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	29	147
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	28	136
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	28	143
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	26	138

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Report Transmission Cover Page

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 2, 2014
	T5S 1E5	LSD:		Report Number:	1971285
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

Contact & Affiliation	Address	Delivery Commitments
Tawnya Anderson	17331-107 Ave NE	On [Lot Verification] send
Nichols Environmental (Canada) Ltd Edmonton, Alberta T5S 1E5		(COA) by Email - Merge Reports
	Phone: (780) 484-3377 Fax: (780) 484-5093	On [Report Approval] send
Email: anderson@nicholsenviro		(Test Report, COC, Test Report) by Email - Merge Reports
Kelly Goetz	17331-107 Ave NE	On [Lot Approval and Final Test Report Approval] send
Nichols Environmental (Canada	a) Ltd Edmonton, Alberta T5S 1E5	(Invoice) by Email - Merge Reports
	Phone: (780) 484-3377	
	Fax: (780) 484-5093	
	Email: goetz@nicholsenvironmental.com	

Notes To Clients:

• Sample 1041068-3, 10 and 11 were past 48 hours holding time for Nitrite and Nitrate analyses.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

 Exova
 T: +1 (780) 438-5522

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E: Edmonton@exova.com

 T6B 3J4, Canada
 W: www.exova com

Analytical Report

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 2, 2014
	T5S 1E5	LSD:		Report Number:	1971285
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

		Reference Number Sample Date Sample Time Sample Location	1041068-3 Nov 21, 2014 NA	1041068-6 Nov 21, 2014 NA	1041068-10 Nov 21, 2014 NA	
		Sample Description Matrix	A5 / 14-01 / 18.3°C Water	A1 / 14-18 / 18.3°C Water	A3 / 14-09 / 18.3°C Water	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Inorganic Nonmetallic Para	ameters					Linit
Chromium (VI)	Dissolved	mg/L	<0.01	<0.01	<0.01	0.01
Chromium (III)	Calculated	mg/L	<0.0005	< 0.0005	<0.0005	0.0005
Metals Dissolved		-				
Mercury	Dissolved	mg/L	<0.000005	<0.000005	<0.000005	0.000005
Aluminum	Dissolved	mg/L	0.004	<0.002	<0.002	0.002
Antimony	Dissolved	mg/L	<0.0002	<0.0002	0.0002	0.0002
Arsenic	Dissolved	mg/L	0.0003	0.0004	0.0003	0.0002
Barium	Dissolved	mg/L	0.124	0.459	0.159	0.001
Boron	Dissolved	mg/L	0.028	0.229	0.099	0.002
Cadmium	Dissolved	mg/L	0.000010	0.000136	0.000072	0.00001
Chromium	Dissolved	mg/L	<0.0005	<0.0005	<0.0005	0.0005
Copper	Dissolved	mg/L	<0.001	<0.001	0.002	0.001
Lead	Dissolved	mg/L	<0.0001	<0.0001	<0.0001	0.0001
Nickel	Dissolved	mg/L	<0.0005	0.0037	0.0024	0.0005
Selenium	Dissolved	mg/L	0.0003	0.0011	0.0005	0.0002
Silver	Dissolved	mg/L	<0.00001	<0.00001	<0.00001	0.00001
Uranium	Dissolved	mg/L	0.0012	0.0047	0.0019	0.0005
Zinc	Dissolved	mg/L	0.004	0.003	0.062	0.001
Subsample	Field Filtered		Field Filtered	Field Filtered	Field Filtered	
Routine Water						
рН			7.91		7.47	
Temperature of observed pH		°C	18.3		18.4	
Electrical Conductivity		µS/cm at 25 C	452		1210	1
Calcium	Dissolved	mg/L	67.8		140	0.2
Magnesium	Dissolved	mg/L	16.9		29.2	0.2
Sodium	Dissolved	mg/L	13.7		126	0.4
Potassium	Dissolved	mg/L	2.3		5.0	0.4
Iron	Dissolved	mg/L	<0.01	<0.01	<0.01	0.01
Manganese	Dissolved	mg/L	0.330	0.756	0.548	0.005
Chloride	Dissolved	mg/L	7.2		159	0.4
Nitrate - N		mg/L	0.27		1.59	0.01
Nitrite - N		mg/L	<0.005		0.012	0.005
Nitrate and Nitrite - N		mg/L	0.27		1.60	0.01
Sulfate (SO4)	Dissolved	mg/L	61.9		75.2	0.9
Hydroxide		mg/L	<5		<5	5
Carbonate		mg/L	<6		<6	6

Terms and Conditions: www.exova com/about/terms-and-conditions

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)		14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 2, 2014
	T5S 1E5	LSD:		Report Number:	1971285
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

		Reference Number Sample Date Sample Time Sample Location	1041068-3 Nov 21, 2014 NA	1041068-6 Nov 21, 2014 NA	1041068-10 Nov 21, 2014 NA	
		Sample Description	A5 / 14-01 / 18.3°C	A1 / 14-18 / 18.3°C	A3 / 14-09 / 18.3°C	
		Matrix	Water	Water	Water	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Routine Water - Continue	ed					
Bicarbonate		mg/L	233		477	5
P-Alkalinity	as CaCO3	mg/L	<5		<5	5
T-Alkalinity	as CaCO3	mg/L	191		391	5
Total Dissolved Solids	Calculated	mg/L	285		770	1
Hardness	Dissolved as CaCO	3 mg/L	239	1360	470	
Ionic Balance	Dissolved	%	102		107	

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	
	Edmonton, AB, Canada	Location:		Date Reported:	
	T5S 1E5	LSD:		Report Number:	
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

		Reference Number Sample Date Sample Time	1041068-3 Nov 21, 2014 NA	1041068-7 Nov 21, 2014 NA	1041068-8 Nov 21, 2014 NA	
	:	Sample Location Sample Description Matrix	A5 / 14-01 / 18.3°C Water	A2 / C1 / 18.3°C Water	A2 / C6 / 18.3°C Water	
Analyte		Units	Results	Results	Results	Nominal Detection
Polycyclic Aromatic Hydro	ocarbons - Water					Linint
Naphthalene		ug/L	<0.1	<0.1	<0.1	0.1
Quinoline		ug/L	<0.3	<0.3	<0.3	0.3
Acenaphthylene		ug/L	<0.1	<0.1	<0.1	0.1
Acenaphthene		ug/L	<0.1	<0.1	<0.1	0.1
Fluorene		ug/L	<0.1	<0.1	<0.1	0.1
Phenanthrene		ug/L	<0.1	<0.1	<0.1	0.1
Anthracene		ug/L	<0.005	<0.005	<0.005	0.005
Acridine		ug/L	<0.1	<0.1	<0.1	0.1
Fluoranthene		ug/L	<0.01	<0.01	<0.01	0.01
Pyrene		ug/L	<0.01	<0.01	<0.01	0.01
Benzo(a)anthracene		ug/L	<0.01	<0.01	<0.01	0.01
Chrysene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(b+j)fluoranthene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(k)fluoranthene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(a)pyrene		ug/L	<0.008	<0.008	<0.008	0.008
Indeno(1,2,3-c,d)pyrene		ug/L	<0.05	<0.05	<0.05	0.05
Dibenzo(a,h)anthracene		ug/L	<0.05	<0.05	<0.05	0.05
Benzo(g,h,i)perylene		ug/L	<0.05	<0.05	<0.05	0.05
CB(a)P	Carcinogenic Potency Equivalent	y ug/L	<0.01	<0.01	<0.01	.01
PAH - Water - Surrogate R	ecovery					
Nitrobenzene-d5	PAH - Surrogate	%	90	100	90	23-130
2-Fluorobiphenyl	PAH - Surrogate	%	100	120	100	30-130
p-Terphenyl-d14	PAH - Surrogate	%	90	100	70	18-137

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	·
	T5S 1E5	LSD:		Report Number:	
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

	Reference Number	1041068-4	1041068-5		
	Sample Date	Nov 21, 2014	Nov 21, 2014		
	Sample Time	NA	NA		
	Sample Location				
	Sample Description	A7 / 14-05 / 18.3°C	A7 / 14-06 / 18.3°C		
	Matrix	Water	Water		
Analyte	Units	Results	Results	Results	Nominal Detection Limit
Mono-Aromatic Hydrocarbons - Water					
Benzene	mg/L	<0.001	<0.001		0.001
Toluene	mg/L	<0.001	<0.001		0.0004
Ethylbenzene	mg/L	<0.001	<0.001		0.001
Total Xylenes (m,p,o)	mg/L	<0.001	<0.001		0.001
Volatile Petroleum Hydrocarbons - Water					
F1 -BTEX	mg/L	<0.2	<0.2		0.1
F1 C6-C10	mg/L	<0.2	<0.2		0.1
F2 C10-C16	mg/L	<0.2	<0.2		0.1
Extractable Petroleum Hydrocarbons - Water					
F3 C16-C34	mg/L	<0.1	<0.1		0.1
F3+ C34+	mg/L	<0.1	<0.1		0.1

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 2, 2014
	T5S 1E5	LSD:		Report Number:	1971285
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	•	
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

		Reference Number Sample Date Sample Time Sample Location	1041068-7 Nov 21, 2014 NA	1041068-8 Nov 21, 2014 NA	1041068-9 Nov 21, 2014 NA	
		Sample Description	A2 / C1 / 18.3°C	A2 / C6 / 18.3°C	A2 / C7 / 18.3°C	
		Matrix	Water	Water	Water	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Chlorinated Phenols - W	/ater					
Pentachlorophenol		ug/L	<0.1	<0.1	<0.1	0.1
Chlorinated Phenols - W	ater - Surrogate Recov	very				
2,4,6-Tribromophenol	PCP - Surrogate	%	58	67	84	40-140

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	
	Edmonton, AB, Canada	Location:		Date Reported:	- , -
	T5S 1E5	LSD:		Report Number:	*
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		1011200
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

	F	Reference Number Sample Date Sample Time Sample Location	1041068-9 Nov 21, 2014 NA	1041068-10 Nov 21, 2014 NA	1041068-11 Nov 21, 2014 NA	
	S	ample Description	A2 / C7 / 18.3°C	A3 / 14-09 / 18.3°C	A3 / MW203 / 18.3°C	
		Matrix	Water	Water	Water	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Polycyclic Aromatic Hydrod	carbons - Water					
Naphthalene		ug/L	<0.1	<0.1	<0.1	0.1
Quinoline		ug/L	<0.3	<0.3	<0.3	0.3
Acenaphthylene		ug/L	<0.1	<0.1	<0.1	0.1
Acenaphthene		ug/L	<0.1	<0.1	<0.1	0.1
Fluorene		ug/L	<0.1	<0.1	<0.1	0.1
Phenanthrene		ug/L	<0.1	<0.1	<0.1	0.1
Anthracene		ug/L	<0.005	<0.005	<0.005	0.005
Acridine		ug/L	<0.1	<0.1	<0.1	0.1
Fluoranthene		ug/L	<0.01	<0.01	0.02	0.01
Pyrene		ug/L	<0.01	<0.01	0.01	0.01
Benzo(a)anthracene		ug/L	<0.01	<0.01	<0.01	0.01
Chrysene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(b+j)fluoranthene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(k)fluoranthene		ug/L	<0.1	<0.1	<0.1	0.1
Benzo(a)pyrene		ug/L	<0.008	<0.008	<0.008	0.008
Indeno(1,2,3-c,d)pyrene		ug/L	<0.05	<0.05	<0.05	0.05
Dibenzo(a,h)anthracene		ug/L	<0.05	<0.05	<0.05	0.05
Benzo(g,h,i)perylene		ug/L	<0.05	<0.05	<0.05	0.05
CB(a)P	Carcinogenic Potency Equivalent	ug/L	<0.01	<0.01	<0.01	.01
PAH - Water - Surrogate Re	covery					
Nitrobenzene-d5	PAH - Surrogate	%	90	90	80	23-130
2-Fluorobiphenyl	PAH - Surrogate	%	90	100	100	30-130
p-Terphenyl-d14	PAH - Surrogate	%	90	100	80	18-137

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Analytical Report

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 2, 2014
	T5S 1E5	LSD:		Report Number:	1971285
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

		Reference Number	1041068-11	1041068-12	1041068-13	
		Sample Date	Nov 21, 2014	Nov 20, 2014	Nov 20, 2014	
		Sample Time	NA	NA	NA	
		Sample Location				
		Sample Description	A3 / MW203 / 18.3°C	14-15 / 18.3°C	14-17 / 18.3°C	
		Matrix	Water	Water	Water	
Analyte		Units	Results	Results	Results	Nominal Detection
Inorganic Nonmetallic Par	rameters					
Chromium (VI)	Dissolved	mg/L	<0.01	<0.01	<0.01	0.01
Chromium (III)	Calculated	mg/L	<0.0005	<0.0005	< 0.0005	0.0005
Metals Dissolved						
Mercury	Dissolved	mg/L	<0.000005	<0.00005	<0.000005	0.000005
Aluminum	Dissolved	mg/L	<0.002	<0.002	<0.002	0.002
Antimony	Dissolved	mg/L	<0.0002	<0.0002	< 0.0002	0.0002
Arsenic	Dissolved	mg/L	<0.0002	0.0003	0.0002	0.0002
Barium	Dissolved	mg/L	0.136	0.103	0.103	0.001
Boron	Dissolved	mg/L	0.091	0.440	0.411	0.002
Cadmium	Dissolved	mg/L	<0.00001	0.000022	0.000030	0.00001
Chromium	Dissolved	mg/L	<0.0005	<0.0005	<0.0005	0.0005
Copper	Dissolved	mg/L	<0.001	<0.001	<0.001	0.001
Lead	Dissolved	mg/L	<0.0001	<0.0001	<0.0001	0.0001
Nickel	Dissolved	mg/L	0.0007	0.0020	0.0015	0.0005
Selenium	Dissolved	mg/L	0.0005	0.0006	< 0.0002	0.0002
Silver	Dissolved	mg/L	<0.00001	<0.00001	<0.00001	0.00001
Uranium	Dissolved	mg/L	0.0016	0.0039	0.0037	0.0005
Zinc	Dissolved	mg/L	0.004	0.001	0.003	0.001
Subsample	Field Filtered	-	Field Filtered	Field Filtered	Field Filtered	
Routine Water						
pН			7.61			
Temperature of observed pH		°C	18.3			
Electrical Conductivity		µS/cm at 25 C	831			1
Calcium	Dissolved	mg/L	146			0.2
Magnesium	Dissolved	mg/L	30.6			0.2
Sodium	Dissolved	mg/L	15.4			0.4
Potassium	Dissolved	mg/L	2.3			0.4
Iron	Dissolved	mg/L	<0.01	<0.01	<0.01	0.01
Manganese	Dissolved	mg/L	0.008	0.344	1.29	0.005
Chloride	Dissolved	mg/L	18.7			0.4
Nitrate - N		mg/L	1.01			0.01
Nitrite - N		mg/L	<0.005			0.005
Nitrate and Nitrite - N		mg/L	1.01			0.01
Sulfate (SO4)	Dissolved	mg/L	77.8			0.9
Hydroxide		mg/L	<5			5
Carbonate		mg/L	<6			6

Terms and Conditions: www.exova com/about/terms-and-conditions

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)		14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 2, 2014
	T5S 1E5	LSD:		Report Number:	1971285
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

		Reference Number	1041068-11	1041068-12	1041068-13	
		Sample Date	Nov 21, 2014	Nov 20, 2014	Nov 20, 2014	
		Sample Time	NA	NA	NA	
		Sample Location				
		Sample Description	A3 / MW203 / 18.3°C	14-15 / 18.3°C	14-17 / 18.3°C	
		Matrix	Water	Water	Water	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Routine Water - Continue	ed					
Bicarbonate		mg/L	508			5
P-Alkalinity	as CaCO3	mg/L	<5			5
T-Alkalinity	as CaCO3	mg/L	417			5
Total Dissolved Solids	Calculated	mg/L	540			1
Hardness	Dissolved as CaCO3	3 mg/L	489	548	428	
Ionic Balance	Dissolved	%	100			

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Analytical Report

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 2, 2014
	T5S 1E5	LSD:		Report Number:	1971285
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

	I	Reference Number	1041068-12	1041068-13		
		Sample Date Sample Time	Nov 20, 2014 NA	Nov 20, 2014 NA		
		Sample Location	INA	NA		
	c	ample Description	14-15 / 18.3°C	14-17 / 18.3°C		
	3	Matrix	Water	Water		
Analyte		Units	Results	Results	Results	Nominal Detection
Polycyclic Aromatic Hydr	ocarbons - Water					Limit
Naphthalene		ug/L	<0.1	<0.1		0.1
Quinoline		ug/L	<0.3	<0.3		0.3
Acenaphthylene		ug/L	<0.1	<0.1		0.1
Acenaphthene		ug/L	<0.1	<0.1		0.1
Fluorene		ug/L	<0.1	<0.1		0.1
Phenanthrene		ug/L	<0.1	<0.1		0.1
Anthracene		ug/L	0.035	<0.005		0.005
Acridine		ug/L	<0.1	<0.1		0.1
Fluoranthene		ug/L	0.09	0.03		0.01
Pyrene		ug/L	0.10	0.04		0.01
Benzo(a)anthracene		ug/L	0.06	0.01		0.01
Chrysene		ug/L	<0.1	<0.1		0.1
Benzo(b+j)fluoranthene		ug/L	<0.1	<0.1		0.1
Benzo(k)fluoranthene		ug/L	<0.1	<0.1		0.1
Benzo(a)pyrene		ug/L	0.072	0.020		0.008
Indeno(1,2,3-c,d)pyrene		ug/L	<0.05	<0.05		0.05
Dibenzo(a,h)anthracene		ug/L	<0.05	<0.05		0.05
Benzo(g,h,i)perylene		ug/L	<0.05	<0.05		0.05
CB(a)P	Carcinogenic Potency Equivalent	ug/L	0.08	0.02		.01
PAH - Water - Surrogate R						
Nitrobenzene-d5	PAH - Surrogate	%	90	90		23-130
2-Fluorobiphenyl	PAH - Surrogate	%	100	90		30-130
p-Terphenyl-d14	PAH - Surrogate	%	70	60		18-137

Data have been validated by Analytical Quality Control and Exova's Integrated Data Validation System (IDVS). Generation and distribution of the report, and approval by the digitized signature above, are performed through a secure and controlled automatic process.

 Exova
 T: +1 (780) 438-5522

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E: Edmonton@exova.com

 T6B 3J4, Canada
 W: www.exova.com

Methodology and Notes

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 2, 2014
	T5S 1E5	LSD:		Report Number:	1971285
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

Method of Analysis

Alkalinity, pH, and EC in waterAPHAAlkalinity, pH, and EC in waterAPHAAlkalinity, pH, and EC in waterAPHAAlkalinity, pH, and EC in waterAPHAAnions (Routine) by IonAPHAChromatographyAPHABTEX-CCME - WaterUS EPAChloride in WaterAPHAChromium (VI) in waterAPHAMercury (Dissolved) in waterAPHAMetals ICP-MS (Dissolved) in waterAPHA/USE	E * Volatile Organic Co Sample Matrices Us Headspace Analysi Chromatography M 5021/8260	B26-Nov-14Method, 4500-H+ B26-Nov-14y with Chemical ent Cond., 4110 B26-Nov-14with Chemical ent Cond., 4110 B24-Nov-14mpounds in Various sing Equilibrium s/Gas ass Spectrometry,26-Nov-14inide Method, 4500-Cl- d, 3500-Cr B26-Nov-14d, 3500-Cr B26-Nov-14c Absorption28-Nov-14	Exova Edmonton Exova Edmonton Exova Edmonton Exova Edmonton Exova Edmonton Exova Calgary Exova Edmonton Exova Edmonton Exova Edmonton
Alkalinity, pH, and EC in waterAPHAAnions (Routine) by IonAPHAChromatographyAPHAApproval-EdmontonAPHABTEX-CCME - WaterUS EPAChloride in WaterAPHAChromium (VI) in waterAPHAMercury (Dissolved) in waterAPHA	 * pH - Electrometric M * Ion Chromatograph Suppression of Eluc Checking Correctne E * Volatile Organic Co Sample Matrices Us Headspace Analysi Chromatography M 5021/8260 * Automated Ferricya E * Colorimetric Methoo * Cold Vapour Atomic 	Method, 4500-H+ B26-Nov-14y with Chemical ent Cond., 4110 B26-Nov-14exs of Analyses, 103024-Nov-14mpounds in Various sing Equilibrium s/Gas ass Spectrometry,26-Nov-14unide Method, 4500-Cl- d, 3500-Cr B26-Nov-14d, 3500-Cr B26-Nov-14c Absorption28-Nov-14	Exova Edmonton Exova Edmonton Exova Edmonton Exova Calgary Exova Edmonton Exova Edmonton
Anions (Routine) by Ion ChromatographyAPHAApproval-EdmontonAPHABTEX-CCME - WaterUS EPAChloride in WaterAPHAChromium (VI) in waterAPHAMercury (Dissolved) in waterAPHA	 * Ion Chromatograph Suppression of Eluc Checking Correctne E * Volatile Organic Co Sample Matrices Us Headspace Analysi Chromatography M 5021/8260 * Automated Ferricya E * Colorimetric Method * Cold Vapour Atomid 	y with Chemical 26-Nov-14 ent Cond., 4110 B ess of Analyses, 1030 24-Nov-14 mpounds in Various 26-Nov-14 sing Equilibrium s/Gas ass Spectrometry, inide Method, 4500-Cl- 26-Nov-14 d, 3500-Cr B 26-Nov-14 c Absorption 28-Nov-14	Exova Edmonton Exova Edmonton Exova Calgary Exova Edmonton Exova Edmonton
Chromatography Approval-Edmonton APHA BTEX-CCME - Water US EPA Chloride in Water APHA Chromium (VI) in water APHA Mercury (Dissolved) in water APHA	Suppression of Eluc Checking Correctne E * Volatile Organic Co Sample Matrices Us Headspace Analysi Chromatography M 5021/8260 * Automated Ferricya E * Colorimetric Methoo * Cold Vapour Atomic	ent Cond., 4110 B ess of Analyses, 1030 24-Nov-14 mpounds in Various 26-Nov-14 sing Equilibrium s/Gas ass Spectrometry, unide Method, 4500-Cl- 26-Nov-14 d, 3500-Cr B 26-Nov-14 c Absorption 28-Nov-14	Exova Edmonton Exova Calgary Exova Edmonton Exova Edmonton
BTEX-CCME - Water US EPA Chloride in Water APHA Chromium (VI) in water APHA Mercury (Dissolved) in water APHA	E * Volatile Organic Co Sample Matrices Us Headspace Analysi Chromatography M 5021/8260 * Automated Ferricya E * Colorimetric Methoo * Cold Vapour Atomic	mpounds in Various 26-Nov-14 sing Equilibrium s/Gas ass Spectrometry, inide Method, 4500-Cl- 26-Nov-14 d, 3500-Cr B 26-Nov-14 c Absorption 28-Nov-14	Exova Calgary Exova Edmonton Exova Edmonton
Chloride in Water APHA Chromium (VI) in water APHA Mercury (Dissolved) in water APHA	Sample Matrices Us Headspace Analysi Chromatography M 5021/8260 * Automated Ferricya E * Colorimetric Method * Cold Vapour Atomid	sing Equilibrium s/Gas ass Spectrometry, nide Method, 4500-Cl- 26-Nov-14 d, 3500-Cr B 26-Nov-14 c Absorption 28-Nov-14	Exova Edmonton Exova Edmonton
Chromium (VI) in water APHA Mercury (Dissolved) in water APHA	E * Colorimetric Method * Cold Vapour Atomid	d, 3500-Cr B 26-Nov-14 c Absorption 28-Nov-14	Exova Edmonton
Mercury (Dissolved) in water APHA	* Cold Vapour Atomic	c Absorption 28-Nov-14	
			Exova Edmonton
Metals ICP-MS (Dissolved) in water APHA/USE	opoolionioino moui	od, 3112 B	
	,	trometry, APHA 3125	Exova Edmonton
Metals Trace (Dissolved) in water APHA	Hardness by Calcul	ation, 2340 B 26-Nov-14	Exova Edmonton
Metals Trace (Dissolved) in water APHA	 Inductively Coupled Method, 3120 B 	Plasma (ICP) 26-Nov-14	Exova Edmonton
PAH - Water AESRD	Carcinogenic PAHs Equivalence (as B(a		Exova Calgary
PAH - Water US EPA	 * Semivolatile Organi Chromatography/M 8270 	c Compounds by Gas 25-Nov-14 ass Spectrometry,	Exova Calgary
PCP - Water US EPA	 * Semivolatile Organi Chromatography/M 8270 	c Compounds by Gas 27-Nov-14 ass Spectrometry,	Exova Calgary
TEH-CCME - Water EPA/CCME	* Separatory Funnel Extraction/CCME, E		Exova Calgary
References	* Reference Method Mod	Jified	

EPA/CCME	Environmental Protection Agency Test Methods - US/CCME
AESRD	Alberta Tier 1 Soil and Groundwater Remediation Guidelines
US EPA	US Environmental Protection Agency Test Methods
APHA	Standard Methods for the Examination of Water and Wastewater

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Methodology and Notes

Bill To:	City of Edmonton	Project:		Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:		Date Received:	Nov 24, 2014
	Edmonton, AB, Canada	Location:		Date Reported:	Dec 2, 2014
	T5S 1E5	LSD:		Report Number:	1971285
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	•	
Sampled By:	Hans B.	Acct code:			
Company:	NECL				

Comments:

• Sample 1041068-3, 10 and 11 were past 48 hours holding time for Nitrite and Nitrate analyses.

Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted. The test report shall not be reproduced except in full, without the written approval of the laboratory.
 Exova
 T +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F +1 (403) 291-2021

 Caigary, Alberta
 E: NWL-Caigary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Hydrocarbon Chromatogram

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	Name:		Control Number:	C0018891
		Location:		Date Received:	Nov 24, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 27, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1971285
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:	Hans B.				
Company:	NECL				
Sampled by:	Edmonton, AB, Canada T5S 1E5 Tawnya Anderson Hans B.		D913127A, C#(required)	and the second se	THE REAL PROPERTY AND ADDRESS

Exova Number: 1041068-4 Sample Date: Nov 21, 2014 Sample Description: 18.3°C A7 14-05

 Exova
 T +1 (403) 291-2022

 Bay #5, 2712-37 Avenue N.E.
 F +1 (403) 291-2021

 Caigary, Alberta
 E: NWL-Caigary@exova.com

 T1Y-5L3, Canada
 W: www.exova.com

Hydrocarbon Chromatogram

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1041068
Report To:	Nichols Environmental (Canada)	Name:		Control Number:	C0018891
		Location:		Date Received:	Nov 24, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Nov 27, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1971285
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:	Hans B.				
Company:	NECL				

Exova Number: 1041068-5 Sample Date: Nov 21, 2014 Sample Description: 18.3°C A7 14-06

xova	Testing, calibrating, advising	Invoice to:			Report To						2				Report	Regulatory
	I coverig	Company:	NOT City of	Educat	Company:	e	-	NI	in	13	En	-ir	-	hr	Results	Requirement
/w.exova.com	ED 120-02	Address:			Address:		-		_	_	_	_	-	_	E-Mail	HCDWQG
oject Informatio	n						-			_	12				Mail	Ab Tier 1
oject ID:	14-214-120	Attention:	Tampay Doler	~	Attention:		1	Tai	my	1	An	der	son		Online	SPIGEC
oject Name:		Phone:	A 28	_	Phone:		-		-	_	-	-	_		Fax	BCCSR
oject Location:		Cell:		_	Cell:		_			_	-	_		-	PDF •	Other (list below)
gal Location:		Fax:			Fax:										Excel	4
)/AFE#:	14-24-100	E-mail:			E-mail 1:										QA/QC	
oj. Acct. Code:		Agreement li			E-mail 2:		-			-	1	_				Custody (please print)
ote #		Copy of repo		_	Copy of in	voice	9:	-		_	_		-		Sampled	by: Hong Ballin
		RUSH Priori	ty									5				
Priority 1-2	(contact lab for turnaround and working days (100% surcharge working days (50% surcharge)	The more means	When "ASAP" is requested, turn arou priority, with pricing and turn around the lab prior to submitting RUSH sam RUSH, please indicate in the special	time to match. P ples, if not all sa	lease contact	ainers	M-LIN-T	10.00		1	and o					tion for Lab use only
Date Required		Sign	ature:			Number of Containers		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COMEN	Diberzo fur	a Mare				Date/Tim	
Special Instructi	ons/Comments (please include cont	act information inclu	ding ph. # if different from above)	er gers		Der	FIN	たちろう	5 3	3	-7				101/22	Av 7:35
Please	bill at City	of Edm	antop Rates !	set se	m	Num	Ba	23		10	Pe-					
Site I.D.	Sample Description	Depth start end in cm m	Date/Time Sampled	Matrix	Sampling Method]↓		(√ 1	Ente relevar		ts ab mple:		ow)			in the space allotted any lies by the corresponding
R6	14-14		Nersosau	H20	10-Lin	3	1	1								1. Indicate any samples the
AG	14-16			11		3	1.	4					-	_	-	were not packaged well
AS A7	14-01		Nov. 21 2010	++-		4	Vu	X	4	-		-	-	+		 Indicate any samples not received in Exova supplies
AT	14-06	1				4			L	1			1			3. Indicate any samples th
Ai	111-18		J.			2	V	1	1						1	were not clearly labeled
A3 A2	C1		Nou se, 2014	11		3		7		N	V					4. Indicate any samples no
A AL	C6		1			3		1	Î	1	V		1		Í	 received within the require hold time or temp.
ACA1	CT					3		1		V	N					5. Indicate any missing or
ANS A7	14-09		Nov. 21, 2014			4	1.	12	1						1	extra samples
AG A3	MW203		1	V	V	4	1	~	1	1						6. Indicate any samples th
A						1										were received broken
													-			7. Indicate any samples where sufficient volume w not received
+ +				1 and		1			1				-			8. Indicate any samples
And the second second	orm acknowledges acceptance	of Exova's Stand	ard Terms	LOT: 1	041068		CO	С		-	Sh	ippin	q:	1	COD Y/ N	 received in an inappropria container
	o://www.exova.com/about/term										-	5.1/	~	coole		
ease indicate ar	y potentially hazardous sam										Ter	np. re	ceiv	ed:	Delivery M	ethod: Quipher
1		ntrol # C 00	The Transferrer of the Control of th									1 1	1. 1	1	Waybill:	

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Report Transmission Cover Page

Bill To:	City of Edmonton	Project:		Lot ID:	1045739
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II	Date Received:	Dec 18, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	
	T5S 1E5	LSD:		Report Number:	
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		
Sampled By:		Acct code:			
Company:					

Contact & Affiliation	Address	Delivery Commitments
Tawnya Anderson Nichols Environmental (Ca	17331-107 Ave NE nada) Ltd Edmonton, Alberta T5S 1E5 Phone: (780) 484-3377	On [Lot Verification] send (COA) by Email - Merge Reports
	Fax: (780) 484-5093 Email:	On [Report Approval] send (Test Report, COC) by Email - Merge Reports On [Lot Creation] send (COR) by Email - Single Report
Kelly Goetz Nichols Environmental (Ca	17331-107 Ave NE nada) Ltd Edmonton, Alberta T5S 1E5 Phone: (780) 484-3377 Fax: (780) 484-5093 Email:	On [Lot Approval and Final Test Report Approval] send (Invoice) by Email - Merge Reports

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova com

Analytical Report

Bill To:	City of Edmonton	Project:		Lot ID:	1045739
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II	Date Received:	Dec 18, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Dec 24, 2014
	T5S 1E5	LSD:		Report Number:	1977739
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	·	
Sampled By:		Acct code:			
Company:					

		4045700 4	4045700 0	4045700.0	
	Reference Number	1045739-1	1045739-2	1045739-3	
	Sample Date	Dec 18, 2014	Dec 18, 2014	Dec 18, 2014	
	Sample Time	NA	NA	NA	
	Sample Location				
	Sample Description	14-07	14-09	MW203	
	Matrix	Water	Water	Water	
Analyte	Units	Results	Results	Results	Nominal Detection Limit
Mono-Aromatic Hydrocarbons - Water					
Benzene	mg/L	<0.001	<0.001	<0.001	0.001
Toluene	mg/L	<0.0005	<0.0005	<0.0005	0.0004
Ethylbenzene	mg/L	<0.001	<0.001	<0.001	0.001
Total Xylenes (m,p,o)	mg/L	<0.002	<0.002	<0.002	0.002
Volatile Petroleum Hydrocarbons - Water					
F1 C6-C10	mg/L	<0.1	<0.1	<0.1	0.1
F1 -BTEX	mg/L	<0.1	<0.1	<0.1	0.1
Extractable Petroleum Hydrocarbons - Water					
F2 C10-C16	mg/L	<0.1	<0.1	<0.1	0.1
F3 C16-C34	mg/L	<0.1	<0.1	0.3	0.1
F3+ C34+	mg/L	0.3	0.3	0.7	0.1

Anthony Weuman

Approved by:

Anthony Neumann, MSc Laboratory Operations Manager

Data have been validated by Analytical Quality Control and Exova's Integrated Data Validation System (IDVS). Generation and distribution of the report, and approval by the digitized signature above, are performed through a secure and controlled automatic process.

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: Edmonton@exova.com W: www.exova.com

Quality Control

Bill To:	City of Edmonton	Project:		Lot ID:	1045739
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II	Date Received:	Dec 18, 2014
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	Dec 24, 2014
	T5S 1E5	LSD:		Report Number:	1977739
Attn:	Tawnya Anderson	P.O.:	14-214-CRD	•	
Sampled By:		Acct code:			
Company:					

Mono-Aromatic	Hydrocarbons - Water					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Benzene	mg/L	0.025	0.026	20	0.002	yes
Toluene	mg/L	0.0262	0.0279	20	0.0020	yes
Ethylbenzene	mg/L	0.030	0.030	20	0.002	yes
m,p-Xylene	mg/L	0.059	0.059	20	0.002	yes
o-Xylene	mg/L	0.029	0.029	20	0.002	yes
Date Acquired:	December 19, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Benzene	mg/L	0.051	0.042	0.058		yes
Toluene	mg/L	0.0521	0.0425	0.0575		yes
Ethylbenzene	mg/L	0.052	0.042	0.058		yes
m,p-Xylene	mg/L	0.105	0.085	0.115		yes
o-Xylene	mg/L	0.053	0.042	0.058		yes
Date Acquired:	December 19, 2014					
F1 C6-C10 Date Acquired:	mg/L December 19, 2014	0.7	0.6	0.8		yes
	oleum Hydrocarbons -					
Water						
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
F2 C10-C16	mg/L	3.6	3.6	30	0.2	yes
F3 C16-C34	mg/L	12.1	12.1	30	0.2	yes
F3+ C34+	mg/L	3.7	3.9	30	0.2	yes
Date Acquired:	December 23, 2014					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
F2 C10-C16	mg/L	94.7	69.4	124.0		yes
F3 C16-C34	mg/L	151	120.0	160.0		yes
Date Acquired:	December 23, 2014					
Matrix Spike	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
50 040 040		70	75	105		

79

118

86

75

75

75

125

125

125

yes

yes

yes

mg/L

F2 C10-C16

Exova 7217 Roper Road NW F: +1 (780) 434-8586 Edmonton, Alberta E: Edmonton@exova.com T6B 3J4, Canada

T: +1 (780) 438-5522 W: www.exova com

Methodology and Notes

Bill To:	City of Edmonton	Project:		Lot ID:	1045739
Report To:	Nichols Environmental (Canada)	ID:	14-214-CRD	Control Number:	
	17331-107 Ave NE	Name:	Phase II	Date Received:	
	Edmonton, AB, Canada	Location:	Rossdale	Date Reported:	
	T5S 1E5	LSD:		Report Number:	,
Attn:	Tawnya Anderson	P.O.:	14-214-CRD		1011100
Sampled By:		Acct code:			
Company:					

Method of Analysis

Method Name	Reference	Method	Date Analysis Started	Location
BTEX-CCME in Water EDM	US EPA	* Volatile Organic Compounds in Various Sample Matrices Using Equilibrium Headspace Analysis/Gas Chromatography Mass Spectrometry, 5021/8260	19-Dec-14	Exova Edmonton
TEH-CCME in Water EDM	MMCA	* Petroleum Hydrocarbons in Water, A108.0	23-Dec-14	Exova Edmonton
References		* Reference Method Modified		
References				

US EPA US Environmental Protection Agency Test Methods

Comments:

Please direct any inquiries regarding this report to our Client Services group. Results relate only to samples as submitted. The test report shall not be reproduced except in full, without the written approval of the laboratory.
 Exovia
 T: +1 (780) 438-5522

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E:Edmonton@exova.com

 T6B 3,J4, Canada
 W: www.exova.com

Hydrocarbon Chromatogram

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1045739
Report To:	Nichols Environmental (Canada)	Name:	Phase II	Control Number:	C0035452
		Location:	Rossdale	Date Received:	Dec 18, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Dec 24, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1977739
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:					
Company:					

Exova Number: 1045739-1 Sample Date: Dec 18, 2014 Sample Description: 14-07

Terms and conditions: www.exova.ca/terms&conditions.html

 Exova
 T: +1 (780) 438-5522

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E:Edmonton@exova.com

 T6B 3,J4, Canada
 W: www.exova.com

Hydrocarbon Chromatogram

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1045739
Report To:	Nichols Environmental (Canada)	Name:	Phase II	Control Number:	C0035452
		Location:	Rossdale	Date Received:	Dec 18, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Dec 24, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1977739
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:					
Company:					

Exova Number: 1045739-2 Sample Date: Dec 18, 2014 Sample Description: 14-09

Terms and conditions: www.exova.ca/terms&conditions html

 Exovia
 T: +1 (780) 438-5522

 7217 Roper Road NW
 F: +1 (780) 434-8586

 Edmonton, Alberta
 E:Edmonton@exova.com

 T6B 3,J4, Canada
 W: www.exova.com

Hydrocarbon Chromatogram

Bill To:	Nichols Environmental (Canada)	Project ID:	14-214-CRD	Lot ID:	1045739
Report To:	Nichols Environmental (Canada)	Name:	Phase II	Control Number:	C0035452
		Location:	Rossdale	Date Received:	Dec 18, 2014
	17331-107 Ave NE	LSD:		Date Reported:	Dec 24, 2014
	Edmonton, AB, Canada	P.O.:	D913127A, C#(required)	Report Number:	1977739
	T5S 1E5				
Attn:	Tawnya Anderson				
Sampled by:					
Company:					

Exova Number: 1045739-3 Sample Date: Dec 18, 2014 Sample Description: MW203

Terms and conditions: www.exova.ca/terms&conditions.html

xova	Testing calibrating	Invoice to:		Report	To:						Report	Regulatory
	advising	Company:	Notes Nichols	En: Compan	iy:	_					Results	Requirement
ww.exova.com	ED 120-02	Address:	17331-107 Ave	Address		-					E-Mail	HCDWQG
oject Informatio	n						1				Mail	Ab Tier 1
roject ID:	14-214-000	Attention:	T. Anderson	Attention	n:	_	_				Online	SPIGEC
roject Name:	Phase II	Phone:	780-484-337	Phone:							Fax	BCCSR
	Researd	Cell:		Cell:		-					PDF	Other (list below)
gal Location:		Fax:		Fax:		-				_	Excel	/
D/AFE#:	14-214-020	E-mail:		E-mail 1:		-					QA/QC .	
oj. Acct. Code:		Agreement ID:		E-mail 2:		-						Custody (please print)
uote #		Copy of report		Copy of	invoice	91					Sampled	by:
	A CONTRACTOR	RUSH Priority					1.0	1.00	and a	1	-	
Emergency	(contact lab for turn round an		Vhen "ASAP" is requested, turn around will d	Construction and a second second				- Longer			Company	y:
Priority 1-2	working days (100% surcharge		rionity, with pricing and turn around time to n he tab prior to submitting RUSH samples. If r		lers			1	-		Contraction of the local division of the loc	
Urgent 2-3 w	working days (50% surcharge)	R	RUSH, please indicate in the special instruction	ins.	Number of Containers	MEU	1.000				This sec	tion for Lab use only
Date Required	A	Signati	ure.		Co	3		5	1000		Date/Tim	ie stamp:
					er of	J	22		1.5	and an	10120118	PH 2:58
	ans/Comments (please include con				- du	0	12.00	1000	10	-		
recipe b	III @ City of Ed	imantan Ras	tes		ž		Sec. 1		1			
											and the second se	
T		Depth		Compliant in the			Ent	er tests	above			in the space allotted any
Site I.D.	Sample Description	Depth start end in cm m	Date/Time Sampled M	atrix Sampling Method					above ples beio	w)		in the space allotted any cies by the corresponding
Site I.D.	Sample Description	start end	Date/Time Sampled M	atrix Method	4	স				w)	deficienc	ties by the corresponding
Site I.D.		start end	DEC 18,2014 A	atrix Method	4	7				w)	deficienc	sies by the corresponding
Site I.D.	14-07	start end	Dec 18,204 H	atrix Method	4	স				N)	deficienc	1. Indicate any samples the were not packaged well 2. Indicate any samples no
Site I.D.	14-07	start end	DEC 18,2014 A	atrix Method	4	7				w)	deficienc	1. Indicate any samples the were not packaged well 2. Indicate any samples no
Site I.D.	14-07	start end	DEC 18,2014 A	atrix Method	4	7					deficienc	1. Indicate any samples the were not packaged well 2. Indicate any samples nor received in Exova supplies 3. Indicate any samples the
Site I.D.	14-07	start end	DEC 18,2014 A	atrix Method	4	7				N)	deficienc	the corresponding 1. Indicate any samples the were not packaged well 2. Indicate any samples no received in Exova supplies 3. Indicate any samples the were not clearly labeled
Site I.D.	14-07	start end	DEC 18,2014 A	atrix Method	4	7				//)	deficienc	 Indicate any samples the were not packaged well Indicate any samples no received in Exova supplies Indicate any samples the were not clearly labeled Indicate any samples no
Site I.D.	14-07	start end	DEC 18,2014 A	atrix Method	4	7				<pre>////////////////////////////////////</pre>	deficienc	 Indicate any samples the were not packaged well Indicate any samples no received in Exova supplies Indicate any samples the were not clearly labeled Indicate any samples no
	14-07	start end	DEC 18,2014 A	atrix Method	4	7				N)	deficienc	 Indicate any samples the were not packaged well Indicate any samples no received in Exova supplies Indicate any samples no received in Exova supplies Indicate any samples the were not clearly labeled Indicate any samples no received within the require hold time or temp. Indicate any missing or
	14-07	start end	DEC 18,2014 A	atrix Method	4	7					deficienc	Sies by the corresponding 1. Indicate any samples th were not packaged well 2. Indicate any samples no received in Exova supplies 3. Indicate any samples th were not clearly labeled 4. Indicate any samples no received within the require
	14-07	start end	DEC 18,2014 A	atrix Method	4	7					deficienc	 1. Indicate any samples the were not packaged well 2. Indicate any samples no received in Exova supplies 3. Indicate any samples no received in Exova supplies 3. Indicate any samples the were not clearly labeled 4. Indicate any samples no received within the require hold time or temp. 5. Indicate any missing or extra samples 6. Indicate any samples the samples of the samples
	14-07	start end	DEC 18,2014 A	atrix Method	4	7					deficienc	 Indicate any samples the were not packaged well Indicate any samples the were not packaged well Indicate any samples no received in Exova supplies Indicate any samples the were not clearly labeled Indicate any samples mereceived within the require hold time or temp. Indicate any missing or extra samples Indicate any samples the were received broken
	14-07	start end	DEC 18,2014 A	atrix Method	4	7					deficienc	 1. Indicate any samples the were not packaged well 2. Indicate any samples no received in Exova supplies 3. Indicate any samples no received in Exova supplies 3. Indicate any samples the were not clearly labeled 4. Indicate any samples no received within the require hold time or temp. 5. Indicate any missing or extra samples 6. Indicate any samples the were received broken 7. Indicate any samples
	14-07	start end	DEC 18,2014 A	atrix Method	4	7					deficienc	 i. Indicate any samples the were not packaged well 2. Indicate any samples no received in Exova supplies 3. Indicate any samples no received in Exova supplies 3. Indicate any samples the were not clearly labeled 4. Indicate any samples no received within the require hold time or temp. 5. Indicate any missing or extra samples 6. Indicate any samples the were received broken 7. Indicate any samples where sufficient volume were not received
	14-07 14-07 203	start end in cm m	Dec 18, 2014 H					ant samp				 Indicate any samples the were not packaged well Indicate any samples not received in Exova supplies Indicate any samples not received in Exova supplies Indicate any samples the were not clearly labeled Indicate any samples not received within the require hold time or temp. Indicate any missing or extra samples Indicate any samples the were received broken Indicate any samples where sufficient volume w not received Indicate any samples
bmission of this fo	14 - 07 14 - 09 203	start end in cm m	Dec 18, 2014 H	atrix Method		7			Shipping		COD Y/ N	 Indicate any samples the were not packaged well Indicate any samples no received in Exova supplies Indicate any samples no received in Exova supplies Indicate any samples the were not clearly labeled Indicate any samples the were not clearly labeled Indicate any samples no received within the require hold time or temp. Indicate any missing or extra samples Indicate any samples the were received broken Indicate any samples where sufficient volume were were sufficient volume word received Indicate any samples received in an inappropriat container
bmission of this fc	14 - 07 14 - 09 203 203 prim acknowledges acceptance ://www.exova.com/acout/term	start end in cm m	Dec 18, 2014 H						Shipping # and size		cod y/ N	 1. Indicate any samples the were not packaged well 2. Indicate any samples no received in Exova supplies 3. Indicate any samples no received in Exova supplies 3. Indicate any samples the were not clearly labeled 4. Indicate any samples no received within the require hold time or temp. 5. Indicate any missing or extra samples 6. Indicate any samples the were received broken 7. Indicate any samples where sufficient volume were sufficient volume were received in an inappropriation container
bmission of this fc	14 - 07 14 - 09 203	start end in cm m	Dec 18, 2014 H						Shipping		COD Y/ N	 Indicate any samples the were not packaged well Indicate any samples not received in Exova supplies Indicate any samples not received in Exova supplies Indicate any samples the were not clearly labeled Indicate any samples not received within the require hold time or temp. Indicate any samples not received within the require hold time or temp. Indicate any samples not received within the require hold time or temp. Indicate any samples not received broken Indicate any samples Indicate any samples the were received broken Indicate any samples

ic.